Generalized Principal Component Analysis - Grand Format

Edition en anglais

Note moyenne 
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional... Lire la suite
38,40 €
Expédié sous 2 à 4 semaines
Livré chez vous entre le 22 juillet et le 5 août

Résumé

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces.
The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.

Caractéristiques

  • Date de parution
    12/04/2016
  • Editeur
  • Collection
  • ISBN
    978-0-387-87810-2
  • EAN
    9780387878102
  • Format
    Grand Format
  • Présentation
    Relié
  • Poids
    1.052 Kg
  • Dimensions
    16,2 cm × 24,1 cm × 4,0 cm

Avis libraires et clients

Des mêmes auteurs

Les clients ont également aimé

Derniers produits consultés

38,40 €