Housecroft Sharpe

# Chimie inorganique





## Chimie inorganique

#### Chez le même éditeur

ATKINS & JONES, Principes de chimie ATKINS & DE PAULA, Chimie Physique, 3<sup>e</sup> éd. CHEYMOL & HOFF, La microchimie CLAYDEN, GREEVES, WARREN, WOTHERS, Chimie organique KETTLE, Physico-Chimie inorganique McQUARRIE & ROCK, Chimie générale

RABASSO, Chimie organique. Généralités, études des grandes fonctions et méthodes spectroscopiques RABASSO, Chimie organique. Hétéroéléments, stratégies de synthèse et chimie organométallique, 2<sup>e</sup> éd. SILVERSTEIN, WEBSTER, KIEMLE, Identification spectrométrique de composés organiques, 2<sup>e</sup> éd. Housecroft | Sharpe

# Chimie inorganique

Traduction de la 3<sup>e</sup> édition anglaise par André Pousse



#### **Ouvrage original**

© Pearson Education Ltd 2001, 2005, 2008.

This translation of Inorganic Chemistry, third edition is published by arrangement with Pearson Education Limited.

Pour toute information sur notre fonds et les nouveautés dans votre domaine de spécialisation, consultez notre site web: **www.deboeck.com** 

© Groupe De Boeck s.a., 2010 Éditions De Boeck Université Rue des Minimes, 39 B-1000 Bruxelles

Tous droits réservés pour tous pays.

Il est interdit, sauf accord préalable et écrit de l'éditeur, de reproduire (notamment par photocopie) partiellement ou totalement le présent ouvrage, de le stocker dans une banque de données ou de le communiquer au public, sous quelque forme et de quelque manière que ce soit.

Imprimé en Italie

Dépôt légal: Bibliothèque Nationale, Paris: août 2010 Bibliothèque royale de Belgique, Bruxelles: 2010/0074/327

ISBN 978-2-8041-6218-4



|    | Avant-propos                                                  | XXXV   |
|----|---------------------------------------------------------------|--------|
|    | Remerciements                                                 | xxxvii |
| 1  | Concepts fondamentaux : les atomes                            | 1      |
| 2  | Concepts fondamentaux : les molécules                         | 30     |
| 3  | Propriétés nucléaires                                         | 58     |
| 4  | Une introduction à la symétrie moléculaire                    | 88     |
| 5  | Les liaisons des molécules polyatomiques                      | 115    |
| 6  | Structures et énergétique des solides métalliques et ioniques | 148    |
| 7  | Acides, bases et ions en solution aqueuse                     | 181    |
| 8  | Réduction et oxydation                                        | 212    |
| 9  | Milieux non-aqueux                                            | 236    |
| 10 | L'hydrogène                                                   | 261    |
| 11 | Groupe 1 : les métaux alcalins                                | 284    |
| 12 | Les métaux du groupe 2                                        | 305    |
| 13 | Les éléments du groupe 13                                     | 325    |
| 14 | Les éléments du groupe 14                                     | 376    |
| 15 | Les éléments du groupe 15                                     | 433    |
| 16 | Les éléments du groupe 16                                     | 490    |
| 17 | Les éléments du groupe 17                                     | 532    |
| 18 | Les éléments du groupe 18                                     | 561    |
| 19 | Composés organométalliques des éléments des blocs s et p      | 574    |

| 20 | Chimie des métaux du bloc d : considérations générales                                      | 611  |
|----|---------------------------------------------------------------------------------------------|------|
| 21 | Chimie des métaux du bloc d : complexes de coordination                                     | 637  |
| 22 | Chimie des métaux du bloc d : les métaux de la première rangée                              | 686  |
| 23 | Chimie des métaux du bloc <i>d</i> : les métaux de la deuxième<br>et de la troisième rangée | 744  |
| 24 | Composés organométalliques des éléments du bloc d                                           | 806  |
| 25 | Métaux du bloc f : lanthanoïdes et actinoïdes                                               | 854  |
| 26 | Complexes des métaux du bloc d : mécanismes de réaction                                     | 880  |
| 27 | Catalyse et procédés industriels                                                            | 905  |
| 28 | Quelques aspects de la chimie du solide                                                     | 938  |
| 29 | Les oligo-éléments métalliques de la vie                                                    | 962  |
|    | Appendices                                                                                  | 999  |
|    | Réponses aux problèmes non-descriptifs                                                      | 1024 |
|    | Index                                                                                       | 1042 |

## Table des matières

|     | Avant-propos<br>Remerciements                                                                                      | xxxv<br>xxxvii |
|-----|--------------------------------------------------------------------------------------------------------------------|----------------|
| 1   | Concepts fondamentaux : les atomes                                                                                 | 1              |
| 1.1 | Introduction                                                                                                       | 1              |
|     | La chimie inorganique n'est pas un domaine isolé de la chimie<br>Les buts des chapitres 1 et 2                     | 1              |
| 1.2 | Particules fondamentales de l'atome                                                                                | 1              |
| 1.3 | Numéro atomique, nombre de masse et isotopes                                                                       | 2              |
|     | Nucléides, numéro atomique et nombre de masse<br>Masse atomique relative                                           | 2              |
|     | Isotopes                                                                                                           | 2              |
| 1.4 | Les succès de la première théorie quantique                                                                        | 3              |
|     | Quelques succès importants de la théorie quantique classique<br>Théorie de Bohr du spectre atomique de l'hydrogène | 4<br>5         |
| 1.5 | Une introduction à la mécanique ondulatoire                                                                        | 6              |
|     | La nature ondulatoire des électrons                                                                                | 6              |
|     | L'équation d'onde de Schrödinger                                                                                   | 6              |
| 1.6 | Orbitales atomiques                                                                                                | 9              |
|     | Les nombres quantiques $n, l$ et $m_l$                                                                             | 9              |
|     | La partie radiale de la fonction d'onde, $R(r)$<br>La fonction de distribution radiale $4\pi r^2 R(r)^2$           | 11<br>12       |
|     | La partie angulaire de la fonction d'onde, $A(\theta, \varphi)$                                                    | 12             |
|     | Énergies des orbitales des espèces hydrogénoïdes                                                                   | 15             |
|     | Taille des orbitales<br>Le nombre quantique de spin et le nombre quantique magnétique de spin                      | 15             |
|     | L'état fondamental de l'atome d'hydrogène                                                                          | 13             |
| 1.7 | Atomes polyélectroniques                                                                                           | 17             |
|     | L'atome d'hélium : deux électrons                                                                                  | 17             |
|     | Pénétration et blindage                                                                                            | 18             |
| 1.8 | Le tableau périodique                                                                                              | 20             |

| 1.9  | Le principe de construction                                                        | 22       |
|------|------------------------------------------------------------------------------------|----------|
|      | Configurations électroniques de l'état fondamental                                 | 22       |
|      | Électrons de valence et électrons de cœur                                          | 23       |
|      | Diagrammes représentant les configurations électroniques                           | 23       |
| 1.10 | Énergies d'ionisation et affinités électroniques                                   | 24       |
|      | Énergies d'ionisation                                                              | 24       |
|      | Affinités électroniques                                                            | 26       |
| 2    | Concepts fondamentaux : les molécules                                              | 30       |
| 24   |                                                                                    | 20       |
| 2.1  | Widdeles de liaison : Introduction                                                 | 30       |
|      | Un survol historique<br>Structures de Lewis                                        | 30<br>30 |
| 2.2  | Molécules diatomiques homonucléaires : théorie de la liaison de valence (LV)       | 31       |
|      | Utilisations du terme homonucléaire                                                | 31       |
|      | Longueur de liaison covalente, rayon covalent et rayon de van der Waals            | 31       |
|      | La liaison dans $H_2$ selon le modèle de la liaison de valence (LV)                | 32       |
|      | Le modele de la liaison de valence (LV) applique a $F_2$ , $O_2$ et $N_2$          | 55       |
| 2.3  | Molécules diatomiques homonucléaires :                                             |          |
|      | la théorie des orbitales moléculaires (OM)                                         | 33       |
|      | Une vue d'ensemble du modèle OM                                                    | 33       |
|      | La liaison dans He <sub>2</sub> Li <sub>2</sub> et Be <sub>2</sub>                 | 36<br>36 |
|      | La liaison dans $F_2$ et $O_2$                                                     | 36       |
|      | Que se passe-t-il si la distance s-p est petite ?                                  | 38       |
| 2.4  | La règle de l'octet et les espèces isoélectroniques                                | 40       |
|      | La règle de l'octet : éléments de la première rangée du bloc p                     | 40       |
|      | Espèces isoélectroniques<br>La règle de l'octet : éléments lourds du bloc <i>p</i> | 41<br>41 |
| 2.5  | Valeurs des électronégativités                                                     | 42       |
|      | Valeurs de l'électronégativité selon Pauling, $\chi^{P}$                           | 42       |
|      | Électronégativités de Mulliken, $\chi^{M}$                                         | 44       |
|      | Electronégativités d'Allred-Rochow, $\chi^{AA}$                                    | 44       |
|      | Electronegativite : remarques infaies                                              | 44       |
| 2.6  | Moments dipolaires                                                                 | 44       |
|      | Molécules diatomiques polaires<br>Moments dipolaires moléculaires                  | 44<br>45 |
| 2.7  | Théorie des OM : molécules diatomiques hétéronucléaires                            | 46       |
|      | Quelles sont les interactions orbitales à prendre en considération ?               | 46       |
|      | Fluorure d'hydrogène                                                               | 47       |
|      | Modèle VSEPR                                                                       | 48<br>48 |
|      | Structures dérivées de la bipyramide triangulaire                                  | 53       |
|      | Limites du modèle VSEPR                                                            | 53       |
| 2.8  | Forme moléculaire : stéréoisomérie                                                 | 54       |
|      | Espèces carrées planes                                                             | 54       |
|      | Espèces en hinvramide triangulaire                                                 | 54       |
|      | Espèces en opyrannue trangulaire                                                   | 55       |

| lab | le d | les m | natier | es | IX |
|-----|------|-------|--------|----|----|
|     | _    |       |        |    |    |

| naute énergie | <u>,</u> |  |
|---------------|----------|--|

| 3.4  | Isotopes artificiels                                                                                                               | 62       |
|------|------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | Bombardement de noyaux par des particules α et des neutrons de haute énergie<br>Bombardement des noyaux par des neutrons « lents » | 62<br>63 |
| 3.5  | Fission nucléaire                                                                                                                  | 63       |
|      | La fission de l'uranium-235                                                                                                        | 63       |
|      | La production d'énergie par fission nucléaire                                                                                      | 64       |
|      | Retraitement nucléaire                                                                                                             | 64       |
| 3.6  | Synthèses des éléments transuraniens                                                                                               | 64       |
| 3.7  | La séparation des isotopes radioactifs                                                                                             | 67       |
|      | Séparation chimique                                                                                                                | 67       |
|      | L'effet Szilard-Chalmers                                                                                                           | 67       |
|      | Fusion nucléaire                                                                                                                   | 67       |
| 3.8  | Applications des isotopes                                                                                                          | 69       |
|      | Spectroscopie infrarouge (IR)                                                                                                      | 69       |
| 3.9  | Effets cinétiques isotopiques                                                                                                      | 70       |
|      | Datation au radiocarbone                                                                                                           | 70       |
|      | Applications analytiques                                                                                                           | 71       |
| 3.10 | Sources de <sup>2</sup> H et de <sup>13</sup> C                                                                                    | 72       |
|      | Deutérium : séparation électrolytique des isotopes                                                                                 | 72       |
|      | Carbone-13 : enrichissement chimique                                                                                               | 72       |
| 3.11 | La spectroscopie de RMN multinucléaire en chimie inorganique                                                                       | 72       |
|      | Quels sont les noyaux utilisables pour les études spectrocopiques par RMN ?                                                        | 72       |
|      | Domaines des déplacements chimiques                                                                                                | 73       |
|      | Couplage spin-spin                                                                                                                 | 73       |
|      | Espèces stereochimiquement non rigides<br>Processus d'échange en solution                                                          | /8<br>70 |
|      | riocosus a conange en solution                                                                                                     | 19       |
| 3.12 | Spectroscopie Mössbauer en chimie inorganique                                                                                      | 82       |
|      | La technique de la spectroscopie Mössbauer                                                                                         | 82       |
|      | Que peut nous dire le déplacement isomérique ?                                                                                     | 82       |

Coordinences élevées Doubles liaisons

Introduction

Radioactivité

Émissions nucléaires

Unités de radioactivité

Transformations nucléaires

3.1

3.2

3.3

Propriétés nucléaires

Énergie de liaison nucléaire

Défaut de masse et énergie de liaison

L'énergie de liaison moyenne par nucléon

La cinétique de la désintégration radioactive

- Que peut nous dire le déplacement isomérique ?

| 4   | Une introduction à la symétrie moléculaire                                                                       | 88  |
|-----|------------------------------------------------------------------------------------------------------------------|-----|
| 4.1 | Introduction                                                                                                     | 88  |
| 4.2 | Opérations de symétrie et éléments de symétrie                                                                   | 88  |
|     | Rotation autour d'un axe de symétrie d'ordre <i>n</i>                                                            | 89  |
|     | Réflexion par rapport à un plan de symétrie (miroir)                                                             | 89  |
|     | Réflexion par rapport à un centre de symétrie (centre d'inversion)                                               | 91  |
|     | Rotation autour d'un axe suivie d'une réflexion par rapport à un plan perpendiculaire                            |     |
|     | à cet axe                                                                                                        | 91  |
|     | Operateur identite                                                                                               | 91  |
| 4.3 | Opérations successives                                                                                           | 93  |
| 4.4 | Groupes ponctuels                                                                                                | 94  |
|     | Groupe ponctuel $C_1$                                                                                            | 94  |
|     | Groupe poinctuel $C_{ray}$                                                                                       | 94  |
|     | Groupe ponctuel $D_{\infty h}$                                                                                   | 95  |
|     | Groupes ponctuels $T_{d}$ , $O_{h}$ ou $I_{h}$                                                                   | 95  |
|     | Détermination du groupe ponctuel d'une molécule ou d'un ion moléculaire                                          | 95  |
| 4.5 | Tableaux de caractères : une introduction                                                                        | 98  |
| 4.6 | Pourquoi avons-nous besoin de reconnaître les éléments de symétrie ?                                             | 99  |
| 4.7 | Spectroscopie vibrationnelle                                                                                     | 100 |
|     | Quel est le nombre de modes de vibration d'une espèce moléculaire donnée ?                                       | 100 |
|     | Règles de sélection d'un mode de vibration actif en infrarouge ou en Raman                                       | 101 |
|     | Molécules triatomiques linéaires ( $D_{\infty h}$ ou $C_{\infty v}$ ) et coudées ( $C_{2v}$ )                    | 101 |
|     | Molécules coudées $XY_2$ : utilisation du tableau de caractères $C_{2v}$                                         | 103 |
|     | Molécules XY <sub>3</sub> de symétrie $D_{3h}$                                                                   | 104 |
|     | Molécules XY de symétrie $T_{av}$                                                                                | 100 |
|     | Molécules XY <sub>4</sub> de symétrie $\Omega_{\rm d}$<br>Molécules XY <sub>6</sub> de symétrie $\Omega_{\rm b}$ | 107 |
|     | Complexes des métaux carbonyle, M(CO),                                                                           | 108 |
|     | Complexes des métaux carbonyle $M(CO)_{6-n}X_n$                                                                  | 109 |
|     | Observation des absorptions en spectroscopie IR : problèmes pratiques                                            | 110 |
| 4.8 | Molécules chirales                                                                                               | 110 |
|     |                                                                                                                  |     |

| 5   | Les liaisons des molécules polyatomiques                                                              | 115 |
|-----|-------------------------------------------------------------------------------------------------------|-----|
| 51  | Introduction                                                                                          | 115 |
| 5.1 | Introduction                                                                                          | 115 |
| 5.2 | Théorie de la liaison de valence : hybridation des orbitales atomiques                                | 115 |
|     | Qu'est-ce que l'hybridation des orbitales ?                                                           | 115 |
|     | Hybridation sp : un schéma pour les espèces linéaires                                                 | 116 |
|     | Hybridation $sp^2$ : un schéma pour les espèces triangulaires                                         | 117 |
|     | Hybridation <i>sp</i> <sup>3</sup> : un schéma pour les espèces tétraédriques et les espèces voisines | 118 |
|     | Autres schémas d'hybridation                                                                          | 119 |
| 5.3 | Théorie de la liaison de valence : liaisons multiples dans les molécules                              |     |
|     | polyatomiques                                                                                         | 120 |
|     | $C_2H_4$                                                                                              | 120 |
|     | HCN                                                                                                   | 120 |
|     | BF <sub>3</sub>                                                                                       | 121 |
|     |                                                                                                       |     |

158

158

| 5.4 | Théorie des orbitales moléculaires : l'approche par le groupe des ligands                                                                                                        | 122 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | et les applications aux molècules triatomiques                                                                                                                                   | 122 |
|     | Diagrammes d'orbitales moleculaires : des espèces diatomiques aux espèces polyatomiques                                                                                          | 122 |
|     | Approche par les OM des haisons de Arig inicarie : examen de l'adequation des synètries<br>Approche par les OM de XH <sub>2</sub> linéaire : à partir de la symétrie moléculaire | 122 |
|     | Une molécule triatomique coudée : $H_2O$                                                                                                                                         | 124 |
| 5.5 | Théorie des orbitales moléculaires appliquée aux molécules polyatomique                                                                                                          | es  |
|     | BH <sub>3</sub> , NH <sub>3</sub> et CH <sub>4</sub>                                                                                                                             | 127 |
|     | BH <sub>3</sub>                                                                                                                                                                  | 127 |
|     | NH <sub>3</sub>                                                                                                                                                                  | 128 |
|     | CH <sub>4</sub>                                                                                                                                                                  | 130 |
|     | Comparaison des modeles de naison LV et OM                                                                                                                                       | 151 |
| 5.6 | Théorie des orbitales moléculaires : l'analyse des liaisons devient vite                                                                                                         |     |
|     | compliquée                                                                                                                                                                       | 133 |
| 5.7 | Théorie des orbitales moléculaires : apprendre à utiliser objectivement                                                                                                          |     |
|     | la théorie                                                                                                                                                                       | 135 |
|     | Liaisons $\pi$ de CO <sub>2</sub>                                                                                                                                                | 135 |
|     | $[NO_3]^-$                                                                                                                                                                       | 137 |
|     | SF <sub>6</sub>                                                                                                                                                                  | 138 |
|     | Interactions à trois centres et deux électrons                                                                                                                                   | 141 |
|     | On probleme plus difficulte . $B_2 H_6$                                                                                                                                          | 141 |

#### Structures et énergétique des solides métalliques et ioniques 148 6 6.1 Introduction 148 6.2 L'empilement des sphères 148 Empilements compacts cubique et hexagonal 148 La maille élémentaire : arrangements compacts hexagonal et cubique 149 Trous interstitiels : empilements compacts hexagonal et cubique 150 Empilements non-compacts : arrangements cubique simple et cubique centré 151 6.3 Application du modèle de l'empilement des sphères aux structures des corps simples 151 Les corps simples du groupe 18 à l'état solide 152 $H_2$ et $F_2$ à l'état solide 152 Les métaux à l'état solide 152 6.4 Le polymorphisme des métaux 153 Le polymorphisme : changements de phase à l'état solide 153 Diagrammes de phases 154 6.5 **Rayons métalliques** 154 6.6 Points de fusion et enthalpies standard d'atomisation des métaux 155 6.7 Alliages et composés intermétalliques 155 Alliages par substitution 155 Alliages interstitiels 155 Composés intermétalliques 158 Liaison dans les métaux et les semi-conducteurs 158 6.8

Conductivité et résistivité électriques Théorie des bandes des métaux et des isolants

|      | Le niveau de Fermi                                                              | 160 |
|------|---------------------------------------------------------------------------------|-----|
|      | Théorie des bandes des semi-conducteurs                                         | 161 |
| 6.9  | Semi-conducteurs                                                                | 161 |
|      | Semi-conducteurs intrinsèques                                                   | 161 |
|      | Semi-conducteurs extrinsèques (de type n et de type p)                          | 161 |
| 6 10 | Tailles des ions                                                                | 162 |
| 0.10 | Payons ioniguos                                                                 | 162 |
|      | Évolutions périodiques des rayons ioniques                                      | 163 |
| 6.11 | Réseaux ioniques                                                                | 164 |
|      | La structure de sel gemme (NaCl)                                                | 165 |
|      | La structure de type chlorure de césium (CsCl)                                  | 167 |
|      | La structure de type fluorine $(CaF_2)$                                         | 168 |
|      | La structure de type antifluorine                                               | 168 |
|      | La structure de type blende de zinc (ZnS) : un réseau de type diamant           | 169 |
|      | La structure de type $\beta$ -cristobalite (SiO <sub>2</sub> )                  | 169 |
|      | La structure de type wuitzite (ZiiS)<br>La structure de type rutile (Ti $O_2$ ) | 169 |
|      | $CdI_2$ et $CdCI_2$ : structures en couches                                     | 170 |
|      | La structure de type pérovskite (CaTiO <sub>3</sub> ) : un oxyde double         | 170 |
| 6.12 | Structures cristallines des semi-conducteurs                                    | 171 |
| 6.13 | Énergie réticulaire : estimations à partir d'un modèle électrostatique          | 171 |
|      | Attraction coulombienne dans une paire d'ions isolée                            | 171 |
|      | Interactions coulombiennes dans un réseau ionique                               | 172 |
|      | Forces de Born                                                                  | 172 |
|      | L'équation de Born-Landé                                                        | 173 |
|      | Constantes de Madelung                                                          | 173 |
|      | Améliorations de l'équation de Born-Landé                                       | 173 |
|      | Vue d'ensemble                                                                  | 174 |
| 6.14 | Énergie réticulaire : le cycle de Born-Haber                                    | 174 |
| 6.15 | Énergie réticulaire : valeurs « calculées » ou valeurs « expérimentales » ?     | 175 |
| 6.16 | Applications des énergies réticulaires                                          | 175 |
|      | Estimation des affinités électroniques                                          | 176 |
|      | Affinités des fluorures                                                         | 176 |
|      | Estimation des enthalpies standard de formation et de dismutation               | 176 |
|      | L'équation de Kapustinskii                                                      | 177 |
| 6.17 | Défauts des réseaux à l'état solide : une introduction                          | 177 |
|      | Défaut de Schottky                                                              | 177 |
|      | Défaut de Frenkel                                                               | 177 |
|      | Observation expérimentale des défauts de Schottky et de Frenkel                 | 178 |
|      |                                                                                 |     |
| 7    | Acides bases et ions en solution aqueuse                                        | 121 |

| 7.1 | Introduction                          | 181 |
|-----|---------------------------------------|-----|
| 7.2 | Propriétés de l'eau                   | 181 |
|     | Structure et liaison hydrogène        | 181 |
|     | L'auto-ionisation de l'eau            | 183 |
|     | L'eau comme acide ou base de Brønsted | 183 |

| 7.3  | Définitions et unités en solution aqueuse                                                                       | 184 |
|------|-----------------------------------------------------------------------------------------------------------------|-----|
|      | Molarité et molalité                                                                                            | 184 |
|      | État standard                                                                                                   | 184 |
|      | Activité                                                                                                        | 184 |
| 7.4  | Quelques acides et bases de Brønsted                                                                            | 185 |
|      | Acides carboxyliques : exemples de mono-, di- et polyacides                                                     | 185 |
|      | Acides inorganiques                                                                                             | 186 |
|      | Bases inorganiques : hydroxydes<br>Bases inorganiques : bases azotées                                           | 180 |
| 7.5  | Énergétique de la dissociation des acides en solution agueuse                                                   | 187 |
|      | Halogénures d'hydrogène                                                                                         | 187 |
|      | $H_2S$ , $H_2Se$ et $H_2Te$                                                                                     | 190 |
| 7.6  | Évolutions dans une série d'oxacides EO <sub>n</sub> (OH) <sub>m</sub>                                          | 190 |
| 7.7  | Cations hydratés : formation et propriétés acides                                                               | 191 |
|      | L'eau comme base de Lewis                                                                                       | 191 |
|      | Les cations aqua comme acides de Brønsted                                                                       | 191 |
| 7.8  | Oxydes et hydroxydes amphotères                                                                                 | 193 |
|      | Comportement amphotère                                                                                          | 193 |
|      | Evolutions périodiques des propriétés amphotères                                                                | 193 |
| 7.9  | Solubilités des sels ioniques                                                                                   | 193 |
|      | Solubilité et solutions saturées                                                                                | 193 |
|      | Sels peu solubles et produits de solubilité<br>Énergétique de la dissolution d'un sel ionique : $A = C^{\circ}$ | 194 |
|      | Énergétique de la dissolution d'un sel jonique : $\Delta_{sol}$                                                 | 195 |
|      | Solubilités : quelques remarques pour conclure                                                                  | 197 |
| 7.10 | Effet d'ion commun                                                                                              | 197 |
| 7.11 | Complexes de coordination : une présentation                                                                    | 198 |
|      | Définitions et terminologie                                                                                     | 198 |
|      | Étude de la formation des complexes de coordination                                                             | 199 |
| 7.12 | Constantes de stabilité des complexes de coordination                                                           | 201 |
|      | Détermination des constantes de stabilité                                                                       | 202 |
|      | Evolutions des constantes de stabilité successives                                                              | 202 |
|      | considerations merinodynamiques sur la formation des complexes : une introduction                               | 202 |
| 7.13 | Facteurs affectant la stabilité des complexes qui ne contiennent que des                                        | 206 |
|      | Taille et cherre de l'ion                                                                                       | 200 |
|      | Centres métalliques et ligands durs et mous                                                                     | 206 |
|      | contro mouniquos or ingunas auto or mous                                                                        | 200 |

#### Réduction et oxydation 8

- 8.1
- Introduction Oxydation et réduction États d'oxydation Nomenclature de Stock
- 212

212

212 212

213

| 8.2                                                | Potentiels de réduction standard $E^\circ$ , et relations entre $E^\circ$ , $\Delta G^\circ$ et K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 213                                                                                                                               |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Demi-piles et cellules galvaniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 213                                                                                                                               |
|                                                    | Définition et utilisation des potentiels standard de réduction $E^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 215                                                                                                                               |
|                                                    | Relation entre les potentiers de reduction et les particularités de la prie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217                                                                                                                               |
| 8.3                                                | Influence de la formation de complexes ou de la précipitation sur les pot<br>de réduction de M <sup>2+</sup> /M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | entiels<br>221                                                                                                                    |
|                                                    | Demi-piles contenant des halogénures d'argent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 221                                                                                                                               |
|                                                    | Modification des stabilités relatives des différents états d'oxydation d'un métal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222                                                                                                                               |
| 8.4                                                | Réactions de dismutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225                                                                                                                               |
|                                                    | Dismutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225                                                                                                                               |
|                                                    | Espèces stabilisantes vis-à-vis de la dismutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 225                                                                                                                               |
| 8.5                                                | Diagrammes de potentiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 226                                                                                                                               |
| 8.6                                                | Diagrammes de Frost-Ebsworth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227                                                                                                                               |
|                                                    | Les diagrammes de Frost-Ebsworth et leurs relations avec les diagrammes de potentiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 227                                                                                                                               |
|                                                    | Interprétation des diagrammes de Frost-Ebsworth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 228                                                                                                                               |
| 8.7                                                | Relations entre les potentiels de réduction standard et quelques autres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
|                                                    | grandeurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230                                                                                                                               |
|                                                    | Facteurs influençant les valeurs des potentiels standard de réduction Valeurs de $\Lambda G^2$ pour les ions acueux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230                                                                                                                               |
|                                                    | values de $\Delta_{\rm f}$ o pour les ions aqueux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 231                                                                                                                               |
| 8.8                                                | Applications des réactions rédox à l'extraction des éléments de leurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 222                                                                                                                               |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>232</b>                                                                                                                        |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
|                                                    | Diagrammes d'Emingham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232                                                                                                                               |
|                                                    | Diagrammes d'Eningnam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232                                                                                                                               |
| 9                                                  | Milieux non-aqueux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 232                                                                                                                               |
| 9                                                  | Milieux non-aqueux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 232                                                                                                                               |
| 9<br>9.1                                           | Milieux non-aqueux Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 232<br>236<br>236                                                                                                                 |
| 9<br>9.1<br>9.2                                    | Milieux non-aqueux Introduction Permittivité relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232<br>236<br>236<br>237                                                                                                          |
| 9<br>9.1<br>9.2<br>9.3                             | Milieux non-aqueux Introduction Permittivité relative Énergétique du transfert d'un sel ionique de l'eau vers un solvant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 232<br>236<br>236<br>237                                                                                                          |
| 9<br>9.1<br>9.2<br>9.3                             | Milieux non-aqueux Introduction Permittivité relative Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 232<br>236<br>237<br>238                                                                                                          |
| 9<br>9.1<br>9.2<br>9.3                             | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement asido base dans los solvants pop aqueux                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236<br>236<br>237<br>238<br>239                                                                                                   |
| 9<br>9.1<br>9.2<br>9.3<br>9.4                      | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases                                                                                                                                                                                                                                                                                                                                                                                                                                   | 232<br>236<br>237<br>238<br>239<br>239                                                                                            |
| 9<br>9.1<br>9.2<br>9.3<br>9.4                      | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants                                                                                                                                                                                                                                                                                                                                                                                        | 232<br>236<br>237<br>238<br>239<br>239<br>239                                                                                     |
| 9<br>9.1<br>9.2<br>9.3<br>9.4                      | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides                                                                                                                                                                                                                                                                                                                                        | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239                                                                              |
| 9<br>9.1<br>9.2<br>9.3<br>9.4                      | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant                                                                                                                                                                                                                                                                           | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239                                                                       |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5               | Diagrammes d'Emignam   Milieux non-aqueux   Introduction   Permittivité relative   Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique   Comportement acide-base dans les solvants non-aqueux   Force des acides et des bases   Effets nivelants et différenciants   Les « acides » dans les solvants acides   Acides et bases : une définition axée sur le solvant   Solvants non-aqueux auto-ionisés ou non-ionisés                                                                                                                                                                                                                                                                                | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239                                           |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.4<br>9.5<br>9.5 | Diagrammes d'Emignam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant         Solvants non-aqueux auto-ionisés ou non-ionisés         L'ammoniac liquide                                                                                                                                                                                         | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239                                    |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.4<br>9.5<br>9.6 | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant         Solvants non-aqueux auto-ionisés ou non-ionisés         L'ammoniac liquide         Propriétés physiques                                                                                                                                                           | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239                                    |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.4<br>9.5<br>9.6 | Diagrammes d Emingham         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant         Solvants non-aqueux auto-ionisés ou non-ionisés         L'ammoniac liquide         Propriétés physiques         Auto-ionisation                                                                                                                                   | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239                                    |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.4<br>9.5<br>9.6 | Diagrammes d'Emingnam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant         Solvants non-aqueux auto-ionisés ou non-ionisés         L'ammoniac liquide         Propriétés physiques         Auto-ionisation         Réactions dans NH3 liquide         Solutions de métaux du bloc s dans NH- liquide                                         | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>240<br>240<br>240<br>241<br>241<br>241 |
| 9<br>9.1<br>9.2<br>9.3<br>9.4<br>9.4<br>9.5<br>9.6 | Diagrammes d'Emignam         Milieux non-aqueux         Introduction         Permittivité relative         Énergétique du transfert d'un sel ionique de l'eau vers un solvant organique         Comportement acide-base dans les solvants non-aqueux         Force des acides et des bases         Effets nivelants et différenciants         Les « acides » dans les solvants acides         Acides et bases : une définition axée sur le solvant         Solvants non-aqueux auto-ionisés ou non-ionisés         L'ammoniac liquide         Propriétés physiques         Auto-ionisation         Réactions dans NH3 liquide         Solutions de métaux du bloc s dans NH3 liquide         Réactions rédox dans NH3 liquide | 232<br>236<br>237<br>238<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239<br>239                                    |

9.7 Le fluorure d'hydrogène liquide

244

244

Propriétés physiques

|      | Tal                                                                      | ble des matières | xv         |
|------|--------------------------------------------------------------------------|------------------|------------|
|      |                                                                          |                  |            |
|      | Comportement acide-base dans HF liquide<br>L'électrolyse dans HF liquide |                  | 244<br>245 |
| 9.8  | Acide sulfurique et acide fluorosulfonique                               |                  | 245        |
|      | Propriétés physiques de l'acide sulfurique                               |                  | 245        |
|      | Comportement acide-base dans H <sub>2</sub> SO <sub>4</sub> liquide      |                  | 246        |
|      | Propriétés physiques de l'acide chlorosulfonique                         |                  | 246        |
| 9.9  | Superacides                                                              |                  | 247        |
| 9.10 | Trifluorure de brome                                                     |                  | 248        |
|      | Propriétés physiques                                                     |                  | 248        |
|      | Comportement des fluorures salins et moléculaires                        |                  | 248        |
|      | Réactions dans BrF <sub>3</sub>                                          |                  | 248        |
| 9.11 | Tétraoxyde de diazote                                                    |                  | 249        |
|      | Propriétés physiques                                                     |                  | 249        |
|      | Réactions dans N <sub>2</sub> O <sub>4</sub>                             |                  | 249        |
| 9.12 | Liquides ioniques                                                        |                  | 251        |
|      | Systèmes de solvants en sels fondus                                      |                  | 251        |
|      | Liquides ioniques à température ambiante                                 |                  | 251        |
|      | Réactions dans les milieux sels fondus / liquides ioniques et applicatio | ns               | 254        |
| 9.13 | Fluides supercritiques                                                   |                  | 255        |
|      | Les propriétés des fluides supercritiques et leurs usages comme solvan   | ts               | 255        |
|      | Les fluides supercritiques comme milieux pour la chimie inorganique      |                  | 257        |

| 10   | L'hydrogène                                                                             | 261    |
|------|-----------------------------------------------------------------------------------------|--------|
| 10.1 | L'hydrogène : l'atomo le plus simple                                                    | 261    |
| 10.1 | L'hydrogene . L'atome le plus simple                                                    | 201    |
| 10.2 | Les ions H <sup>+</sup> et H <sup>−</sup>                                               | 261    |
|      | L'ion hydrogène (le proton)                                                             | 261    |
|      | L'ion hydrure                                                                           | 262    |
| 10.3 | lsotopes de l'hydrogène                                                                 | 262    |
|      | Protium et deutérium                                                                    | 262    |
|      | Composés deutérés                                                                       | 263    |
|      | Tritium                                                                                 | 263    |
| 10.4 | Dihydrogène                                                                             | 263    |
|      | État naturel                                                                            | 263    |
|      | Propriétés physiques                                                                    | 263    |
|      | Synthèse et utilisations                                                                | 265    |
|      | Réactivité                                                                              | 268    |
| 10.5 | Liaisons E–H polaires et apolaires                                                      | 269    |
| 10.6 | Liaison hydrogène                                                                       | 270    |
|      | La liaison hydrogène                                                                    | 270    |
|      | Évolution des points d'ébullition, des points de fusion et des enthalpies de vaporisati | on des |
|      | hydrures du bloc p                                                                      | 273    |
|      | Spectroscopie infrarouge                                                                | 273    |
|      | Structures à l'état solide                                                              | 273    |
|      | La fiaison nydrogene dans les systèmes piologiques                                      | 2/6    |

| 10.7 | Hydrures binaires : classification et propriétés générales | 278 |
|------|------------------------------------------------------------|-----|
|      | Classification                                             | 278 |
|      | Hydrures métalliques                                       | 278 |
|      | Hydrures salins                                            | 279 |
|      | Hydrures moléculaires et complexes dérivés                 | 279 |
|      | Hydrures covalents ayant des structures étendues           | 281 |

| 11   | Groupe 1 : les métaux alcalins                                    | 284 |
|------|-------------------------------------------------------------------|-----|
| 11.1 | Introduction                                                      | 284 |
| 11.2 | État naturel, extraction et utilisations                          | 284 |
|      | État naturel                                                      | 284 |
|      | Extraction                                                        | 284 |
|      | Utilisations principales des métaux alcalins et de leurs composés | 285 |
| 11.3 | Propriétés physiques                                              | 286 |
|      | Propriétés générales                                              | 286 |
|      | Spectres atomiques et tests de flamme                             | 287 |
|      | Isotopes radioactifs                                              | 289 |
|      | Noyaux actifs en RMN                                              | 289 |
| 11.4 | Les métaux                                                        | 289 |
|      | Aspect                                                            | 289 |
|      | Réactivité                                                        | 289 |
| 11.5 | Halogénures                                                       | 292 |
| 11.6 | Oxydes et hydroxydes                                              | 293 |
|      | Oxydes, peroxydes, superoxydes, sous-oxydes et ozonides           | 293 |
|      | Hydroxydes                                                        | 294 |
| 11.7 | Sels des oxacides : carbonates et hydrogénocarbonates             | 294 |
| 11.8 | Chimie en solution aqueuse incluant les complexes macrocycliques  | 296 |
|      | Ions hydratés                                                     | 296 |
|      | Ions complexes                                                    | 297 |
| 11.9 | Chimie de coordination non-aqueuse                                | 301 |

| 12   | Les métaux du groupe 2                                               | 305 |
|------|----------------------------------------------------------------------|-----|
| 12.1 | Introduction                                                         | 305 |
| 12.2 | État naturel, extraction et utilisations                             | 305 |
|      | État naturel                                                         | 305 |
|      | Extraction                                                           | 306 |
|      | Utilisations principales des métaux du groupe 2 et de leurs composés | 307 |
| 12.3 | Propriétés physiques                                                 | 308 |
|      | Propriétés générales                                                 | 308 |
|      | Tests de flamme                                                      | 309 |
|      | Isotopes radioactifs                                                 | 309 |

| 12.4  | Les métaux                                                     | 309 |
|-------|----------------------------------------------------------------|-----|
|       | Aspect                                                         | 309 |
|       | Réactivité                                                     | 309 |
| 12.5  | Halogénures                                                    | 311 |
|       | Halogénures de béryllium                                       | 311 |
|       | Halogénures de Mg, Ca, Sr et Ba                                | 312 |
| 12.6  | Oxydes et hydroxydes                                           | 314 |
|       | Oxydes et peroxydes                                            | 314 |
|       | Hydroxydes                                                     | 317 |
| 12.7  | Sels des oxacides                                              | 317 |
| 12.8  | lons complexes en solution aqueuse                             | 318 |
|       | Espèces aqua du béryllium                                      | 318 |
|       | Espèces aqua de $Mg^{2+}$ , $Ca^{2+}$ , $Sr^{2+}$ et $Ba^{2+}$ | 318 |
|       | Complexes avec des ligands autres que l'eau                    | 320 |
| 12.9  | Complexes ayant des ligands amido ou alcoxy                    | 320 |
| 12.10 | Relations diagonales entre Li et Mg, et entre Be et Al         | 321 |
|       | Lithium et magnésium                                           | 322 |
|       | Béryllium et aluminium                                         | 322 |
|       |                                                                |     |

### 13Les éléments du groupe 13325

| 13.1 | Introduction                                                            | 325 |
|------|-------------------------------------------------------------------------|-----|
| 13.2 | État naturel, extraction et utilisations                                | 325 |
|      | État naturel                                                            | 325 |
|      | Extraction                                                              | 325 |
|      | Utilisations principales des éléments du groupe 13 et de leurs composés | 327 |
| 13.3 | Propriétés physiques                                                    | 329 |
|      | Configurations électroniques et états d'oxydation                       | 329 |
|      | Noyaux actifs en RMN                                                    | 331 |
| 13.4 | Les corps simples                                                       | 331 |
|      | Aspect                                                                  | 331 |
|      | Structures des corps simples                                            | 332 |
|      | Réactivité                                                              | 333 |
| 13.5 | Hydrures simples                                                        | 334 |
|      | Hydrures neutres                                                        | 334 |
|      | Les ions $[MH_4]^-$                                                     | 339 |
| 13.6 | Halogénures et halogénures complexes                                    | 340 |
|      | Halogénures de bore : $BX_3$ et $B_2X_4$                                | 340 |
|      | Halogénures de Al(III), Ga(III), In(III) et Tl(III) et leurs complexes  | 343 |
|      | Halogénures à faible état d'oxydation de Al, Ga, In et Tl               | 345 |
| 13.7 | Oxydes, oxacides, oxoanions et hydroxydes                               | 347 |
|      | Oxydes, oxacides et oxoanions du bore                                   | 347 |
|      | Oxydes, oxacides, oxoanions et hydroxydes d'aluminium                   | 349 |
|      | Oxydes de Ga, In et Tl                                                  | 352 |

| 13.8  | Composés contenant de l'azote                                           | 352 |
|-------|-------------------------------------------------------------------------|-----|
|       | Nitrures                                                                | 352 |
|       | Nitrures de bore ternaires                                              | 354 |
|       | Espèces moléculaires contenant des liaisons B-N ou B-P                  | 354 |
|       | Espèces moléculaires contenant des liaisons azote-métal du groupe 13    | 357 |
| 13.9  | De l'aluminium au thallium : sels des oxacides, chimie en solution      |     |
|       | aqueuse et complexes                                                    | 357 |
|       | Sulfate d'aluminium et aluns                                            | 357 |
|       | Ions aqua                                                               | 358 |
|       | Réactions rédox en solution aqueuse                                     | 358 |
|       | Complexes de coordination des ions $M^{3+}$                             | 359 |
| 13.10 | Borures métalliques                                                     | 360 |
| 42.44 | Clusters herene et serberene déficients en électrons : une introduction | 262 |

| 14   | Les éléments du groupe 14                                                                                                                                                     | 376                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 14.1 | Introduction                                                                                                                                                                  | 376                             |
| 14.2 | <b>État naturel, extraction et utilisations</b><br>État naturel<br>Extraction et fabrication<br>Utilisations                                                                  | <b>376</b><br>376<br>377<br>377 |
| 14.3 | Propriétés physiques                                                                                                                                                          | 380                             |
|      | Énergies d'ionisation et formation des cations<br>Quelques considérations sur l'énergie et la liaison<br>Noyaux actifs en RMN<br>Spectroscopie Mössbauer                      | 380<br>381<br>384<br>384        |
| 14.4 | Allotropes du carbone                                                                                                                                                         | 384                             |
|      | Graphite et diamant : structure et propriétés<br>Graphite : composés d'intercalation<br>Fullerènes : synthèse et structure<br>Fullerènes : réactivité<br>Nanotubes de carbone | 384<br>386<br>387<br>387<br>394 |
| 14.5 | Propriétés structurales et chimiques du silicium, du germanium, de l'éta                                                                                                      | ain                             |
|      | et du plomb<br>Structures<br>Propriétés chimiques                                                                                                                             | <b>394</b><br>394<br>394        |
| 14.6 | Hydrures                                                                                                                                                                      | 395                             |
|      | Hydrures binaires<br>Halohydrures de silicium et de germanium                                                                                                                 | 396<br>398                      |
| 14.7 | Carbures, siliciures, germaniures, stannures et plombures                                                                                                                     | 399                             |
|      | Carbures<br>Siliciures<br>Ions de Zintl contenant Si, Ge, Sn et Pb                                                                                                            | 399<br>400<br>400               |
| 14.8 | Halogénures et halogénures complexes                                                                                                                                          | 403                             |
|      | Halogénures de carbone<br>Halogénures de silicium<br>Halogénures de germanium, d'étain et de plomb                                                                            | 403<br>405<br>405               |

| 14.9  | Oxydes, oxacides et hydroxydes                                        | 409 |
|-------|-----------------------------------------------------------------------|-----|
|       | Oxydes et oxacides de carbone                                         | 409 |
|       | Silice, silicates et aluminosilicates                                 | 413 |
|       | Oxydes, hydroxydes et oxacides de germanium, d'étain et de plomb      | 419 |
| 14.10 | Siloxanes et polysiloxanes (silicones)                                | 422 |
| 14.11 | Sulfures                                                              | 423 |
| 14.12 | Cyanogène, nitrure de silicium et nitrure d'étain                     | 426 |
|       | Le cyanogène et ses dérivés                                           | 426 |
|       | Nitrure de silicium                                                   | 428 |
|       | Nitrure d'étain(IV)                                                   | 428 |
| 14.13 | Chimie en solution aqueuse et sels des oxacides de germanium, d'étain |     |
|       | et de plomb                                                           | 428 |

| 15   | Les éléments du groupe 15                                     | 433 |
|------|---------------------------------------------------------------|-----|
| 15.1 | Introduction                                                  | 433 |
| 15 2 | État naturel extraction et utilisations                       | 435 |
| 13.2 |                                                               | 435 |
|      | Extraction                                                    | 435 |
|      | Utilisations                                                  | 436 |
| 15.3 | Propriétés physiques                                          | 437 |
|      | Examen des liaisons                                           | 439 |
|      | Noyaux actifs en RMN                                          | 441 |
|      | Isotopes radioactifs                                          | 441 |
| 15.4 | Les corps simples                                             | 441 |
|      | Azote                                                         | 441 |
|      | Phosphore                                                     | 441 |
|      | Arsenic, antimoine et bismuth                                 | 443 |
| 15.5 | Hydrures                                                      | 443 |
|      | Trihydrures, $EH_3$ (E = N, P, As, Sb et Bi)                  | 443 |
|      | Hydrures $E_2H_4$ (E = N, P, As)                              | 447 |
|      | Chloramine et hydroxylamine                                   | 448 |
|      | Azoture d'hydrogène et autres azotures                        | 449 |
| 15.6 | Nitrures, phosphures, arséniures, antimoniures et bismuthures | 451 |
|      | Nitrures                                                      | 451 |
|      | Phosphures                                                    | 451 |
|      | Arséniures, antimoniures et bismuthures                       | 453 |
| 15.7 | Halogénures, oxyhalogénures et halogénures complexes          | 455 |
|      | Halogénures d'azote                                           | 455 |
|      | Oxyfluorures et oxychlorures d'azote                          | 457 |
|      | Halogénures de phosphore                                      | 457 |
|      | Trichlorure de phosphoryle POCl <sub>3</sub>                  | 460 |
|      | Halogénures d'arsenic et d'antimoine                          | 460 |
|      | Halogenures de bismuth                                        | 462 |

| 15.8  | Oxydes d'azote                                            | 463  |
|-------|-----------------------------------------------------------|------|
|       | Monoxyde de diazote, N <sub>2</sub> O                     | 463  |
|       | Monoxyde d'azote, NO                                      | 464  |
|       | Trioxyde de diazote                                       | 467  |
|       | Tétroxyde de diazote, $N_2O_4$ et dioxyde d'azote $NO_2$  | 467  |
|       | Pentoxyde de diazote, $N_2O_5$                            | 468  |
| 15.9  | Oxacides d'azote                                          | 468  |
|       | Isomères de $H_2N_2O_2$                                   | 468  |
|       | Acide nitreux, HNO <sub>2</sub>                           | 468  |
|       | Acide nitrique, HNO <sub>3</sub> , et dérivés             | 469  |
| 15.10 | Oxydes de phosphore, d'arsenic, d'antimoine et de bismuth | 472  |
|       | Oxydes de phosphore                                       | 473  |
|       | Oxydes d'arsenic, d'antimoine et de bismuth               | 474  |
| 15.11 | Oxacides de phosphore                                     | 474  |
|       | Acide phosphinique $H_3PO_2$                              | 474  |
|       | Acide phosphonique, H <sub>3</sub> PO <sub>3</sub>        | 476  |
|       | Acide hypodiphosphorique, $H_4P_2O_6$                     | 476  |
|       | Acide phosphorique, $H_3PO_4$ , et dérivés                | 476  |
|       | Anions phosphate chiraux                                  | 480  |
| 15.12 | Oxacides d'arsenic, d'antimoine et de bismuth             | 480  |
| 15.13 | Phosphazènes                                              | 481  |
| 15 14 | Sulfures et séléniures                                    | 484  |
| 19111 | Sulfures et séléniures de phoephore                       | 181  |
|       | Sulfures d'arsenic, d'antimoine et de bismuth             | 404  |
|       |                                                           | -105 |
| 15.15 | Chimie en solution aqueuse et complexes                   | 485  |
|       |                                                           |      |

| 16   | Les éléments du groupe 16                               | 490 |
|------|---------------------------------------------------------|-----|
| 16.1 | Introduction                                            | 490 |
| 16.2 | État naturel, extraction et utilisations                | 490 |
|      | État naturel                                            | 490 |
|      | Extraction                                              | 491 |
|      | Utilisations                                            | 492 |
| 16.3 | Propriétés physiques et considérations sur les liaisons | 492 |
|      | Noyaux actifs en RMN et marqueurs isotopiques           | 495 |
| 16.4 | Les corps simples                                       | 495 |
|      | Dioxygène                                               | 495 |
|      | Ozone                                                   | 496 |
|      | Allotropes du soufre                                    | 498 |
|      | Réactivité du soufre                                    | 499 |
|      | Sélénium et tellure                                     | 500 |
| 16.5 | Hydrures                                                | 501 |
|      | Eau, $H_2O$                                             | 501 |
|      | Peroxyde d'hydrogène                                    | 501 |

|       | Hydrures $H_2E$ (E = S, Se, Te)<br>Polysulfanes                                                                                                                                                                                                                                                                                                                                                                                                                               | 504<br>505                                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 16.6  | <b>Sulfures, polysulfures, polyséléniures et polytellurures métalliques</b><br>Sulfures<br>Polysulfures<br>Polyséléniures et polytellurures                                                                                                                                                                                                                                                                                                                                   | <b>505</b><br>505<br>505<br>507                                    |
| 16.7  | Halogénures, oxyhalogénures et halogénures complexes                                                                                                                                                                                                                                                                                                                                                                                                                          | 508                                                                |
|       | Fluorures d'oxygène<br>Fluorures et oxyfluorures de soufre<br>Chlorures et oxychlorures de soufre<br>Halogénures de sélénium et de tellure                                                                                                                                                                                                                                                                                                                                    | 508<br>509<br>511<br>512                                           |
| 16.8  | Oxydes                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 515                                                                |
|       | Oxydes de soufre                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 515                                                                |
|       | Oxydes de sélénium et de tellure                                                                                                                                                                                                                                                                                                                                                                                                                                              | 518                                                                |
| 16.9  | Oxacides et leurs sels                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 520                                                                |
|       | Acide dithioneux, $H_2S_2O_4$<br>Acides sulfureux et disulfureux, $H_2SO_3$ et $H_2S_2O_5$<br>Acide dithionique, $H_2S_2O_6$                                                                                                                                                                                                                                                                                                                                                  | 520<br>520<br>522                                                  |
|       | Acide sulfurique, $H_2SO_4$<br>Acides fluoro- et chlorosulfoniques, $HSO_3F$ et $HSO_3Cl$<br>Polyoxacides ayant des unités S–O–S<br>Acides peroxysulfuriques, $H_2S_2O_8$ et $H_2SO_5$<br>Acide thiosulfurique, $H_2S_2O_3$ , et polythionates<br>Oxacides du sélénium et du tellure                                                                                                                                                                                          | 522<br>524<br>524<br>524<br>524<br>525<br>525                      |
| 16.10 | Acide sulfurique, H <sub>2</sub> SO <sub>4</sub><br>Acides fluoro- et chlorosulfoniques, HSO <sub>3</sub> F et HSO <sub>3</sub> Cl<br>Polyoxacides ayant des unités S–O–S<br>Acides peroxysulfuriques, H <sub>2</sub> S <sub>2</sub> O <sub>8</sub> et H <sub>2</sub> SO <sub>5</sub><br>Acide thiosulfurique, H <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , et polythionates<br>Oxacides du sélénium et du tellure<br><b>Composés du soufre et du sélénium avec l'azote</b> | 522<br>524<br>524<br>524<br>525<br>525<br><b>525</b>               |
| 16.10 | Acide sulfurique, $H_2SO_4$<br>Acides fluoro- et chlorosulfoniques, $HSO_3F$ et $HSO_3Cl$<br>Polyoxacides ayant des unités S–O–S<br>Acides peroxysulfuriques, $H_2S_2O_8$ et $H_2SO_5$<br>Acide thiosulfurique, $H_2S_2O_3$ , et polythionates<br>Oxacides du sélénium et du tellure<br><b>Composés du soufre et du sélénium avec l'azote</b><br>Composés soufre-azote<br>Tétranitrure de tétrasélénium                                                                       | 522<br>524<br>524<br>524<br>525<br>525<br><b>526</b><br>526<br>528 |

| 17   | Les éléments du groupe 17                               | 532 |
|------|---------------------------------------------------------|-----|
|      |                                                         |     |
| 17.1 | Introduction                                            | 532 |
|      | Fluor, chlore, brome et iode                            | 532 |
|      | Astate                                                  | 533 |
| 17.2 | État naturel, extraction et utilisations                | 533 |
|      | État naturel                                            | 533 |
|      | Extraction                                              | 533 |
|      | Utilisations                                            | 534 |
| 17.3 | Propriétés physiques et considérations sur les liaisons | 537 |
|      | Noyaux actifs en RMN et isotopes comme marqueurs        | 538 |
| 17.4 | Les corps simples                                       | 540 |
|      | Dichlore, dibrome et diiode                             | 540 |
|      | Complexes de transfert de charge                        | 541 |
|      | Clathrates                                              | 542 |
| 17.5 | Halogénures d'hydrogène                                 | 543 |

|--|

| 17.6  | Halogénures métalliques : structures et énergétique     | 544 |
|-------|---------------------------------------------------------|-----|
| 17.7  | Composés interhalogènes et ions polyhalogénés           | 545 |
|       | Composés interhalogènes                                 | 545 |
|       | Liaisons des ions [XY <sub>2</sub> ]                    | 549 |
|       | Cations polyhalogènes                                   | 549 |
|       | Anions polyhalogénures                                  | 550 |
| 17.8  | Oxydes et oxyfluorures du chlore, du brome et de l'iode | 550 |
|       | Oxydes                                                  | 550 |
|       | Oxyfluorures                                            | 552 |
| 17.9  | Les oxacides et leurs sels                              | 553 |
|       | Acide hypofluoreux                                      | 553 |
|       | Oxacides du chlore, du brome et de l'iode               | 553 |
| 17.10 | Chimie en solution aqueuse                              | 556 |

| 18   | Les éléments du groupe 18                   | 561               |
|------|---------------------------------------------|-------------------|
| 18.1 | Introduction                                | 561               |
| 18.2 | État naturel, extraction et utilisations    | 562               |
|      | État naturel<br>Extraction<br>Utilisations  | 562<br>562<br>562 |
| 18.3 | Propriétés physiques                        | 564               |
|      | Noyaux actifs en RMN                        | 565               |
| 18.4 | Composés du xénon                           | 565               |
|      | Fluorures                                   | 565               |
|      | Chlorures                                   | 568               |
|      | Oxydes                                      | 569               |
|      | Oxyfluorures                                | 569               |
|      | Autres composés du xénon                    | 569               |
| 18.5 | Composés de l'argon, du krypton et du radon | 572               |

| 19   | Composés organométalliques des éléments des blocs s et p | 574 |
|------|----------------------------------------------------------|-----|
|      |                                                          |     |
| 19.1 | Introduction                                             | 574 |
|      |                                                          |     |
| 19.2 | Groupe 1 : organométalliques des métaux alcalins         | 575 |
|      |                                                          |     |
| 19.3 | Organométalliques du groupe 2                            | 578 |
|      | Béryllium                                                | 578 |
|      | Magnésium                                                | 579 |
|      | Calcium, strontium et baryum                             | 581 |
| 10.4 | Crowno 12                                                | 502 |
| 19.4 | Groupe 13                                                | 582 |
|      | Bore                                                     | 582 |

|      | A l                                                                    | 502 |
|------|------------------------------------------------------------------------|-----|
|      | Aluminium                                                              | 585 |
|      | Gallium, indium et thallium                                            | 586 |
| 19.5 | Groupe 14                                                              | 590 |
|      | Silicium                                                               | 591 |
|      | Germanium                                                              | 593 |
|      | Étain                                                                  | 595 |
|      | Plomb                                                                  | 598 |
|      | Cycles $C_5$ parallèles et inclinés dans les métallocènes du groupe 14 | 601 |
| 19.6 | Groupe 15                                                              | 602 |
|      | Aspects de la liaison et formation de la liaison E=E                   | 602 |
|      | Arsenic, antimoine et bismuth                                          | 602 |
| 19.7 | Groupe 16                                                              | 605 |
|      | Sélénium et tellure                                                    | 605 |
|      |                                                                        |     |

| 20   | Chimie des métaux du bloc <i>d</i> : considérations générales | 611        |
|------|---------------------------------------------------------------|------------|
| 20.1 | Vue d'ensemble du sujet                                       | 611        |
| 20.2 | Configurations électroniques à l'état fondamental             | 611        |
| LUIL | Métaux du blac d et élémente de transition                    | 611        |
|      | Configurations électroniques                                  | 612        |
| 20.3 | Propriétés physiques                                          | 612        |
| 20.4 | La réactivité des métaux                                      | 614        |
| 20.5 | Propriétés caractéristiques : perspective générale            | 614        |
|      | Couleur                                                       | 614        |
|      | Paramagnétisme                                                | 615        |
|      | Formation des complexes                                       | 615        |
|      | États d'oxydation variables                                   | 618        |
|      | Principe d'électroneutralité                                  | 619        |
| 20.6 | Coordinences et géométries                                    | 619        |
|      | Le modèle de Kepert                                           | 620        |
|      | Coordinences à l'état solide                                  | 621        |
|      | Coordinence 2                                                 | 621        |
|      | Coordinence 3                                                 | 622        |
|      | Coordinence 4                                                 | 622        |
|      | Coordinence 5                                                 | 623        |
|      | Coordinance 6                                                 | 623        |
|      | Coordinance /                                                 | 625        |
|      | Coordinance 8                                                 | 020<br>626 |
|      | Coordinance 9<br>Coordinance 10 et au-dessus                  | 627        |
| 20.7 | lsomérie des complexes des métaux du bloc d                   | 627        |
|      | Isomérie structurale : isomérie d'ionisation                  | 627        |
|      | Isomérie structurale : isomérie d'hydratation                 | 628        |
|      | Isomérie structurale : isomérie de coordination               | 628        |
|      | Isomérie structurale : isomérie d'enchaînement                | 628        |
|      | Stéréoisomérie : diastéréoisomères                            | 629        |
|      | Stéréoisomérie : énantiomères                                 | 629        |
|      |                                                               |            |

| 21    | Chimie des métaux du bloc <i>d</i> : complexes de coordination                                                                                        | 637         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 21.1  | Introduction                                                                                                                                          | 637         |
|       | États haut spin et bas spin                                                                                                                           | 637         |
| 21.2  | Les liaisons dans les complexes des métaux du bloc <i>d</i> : théorie de la                                                                           |             |
|       | liaison de valence                                                                                                                                    | 638         |
|       | Schémas d'hybridation                                                                                                                                 | 638         |
|       | Les limites de la théorie de la liaison de valence (LV)                                                                                               | 638         |
| 21.3  | Théorie du champ cristallin                                                                                                                           | 640         |
|       | Le champ cristallin octaédrique<br>Énergie de stabilisation du champ cristallin : complexes octaédriques à haut et à has spin                         | 640<br>642  |
|       | Déformations de Jahn-Teller                                                                                                                           | 644         |
|       | Le champ cristallin tétraédrique                                                                                                                      | 645         |
|       | Le champ cristallin carre plan<br>Autres champs cristallins                                                                                           | 646<br>647  |
|       | Théorie du champ cristallin : utilisations et limites                                                                                                 | 647         |
| 21.4  | Théorie des orbitales moléculaires : complexes octaédriques                                                                                           | 648         |
|       | Complexes sans liaison $\pi$ métal-ligand                                                                                                             | 648         |
|       | Complexes ayant des liaisons $\pi$ métal-ligand                                                                                                       | 649         |
| 21.5  | Théorie du champ des ligands                                                                                                                          | 654         |
| 21.6  | Description des électrons dans les systèmes polyélectroniques                                                                                         | 654         |
|       | Les nombres quantiques $L$ et $M_L$ pour les espèces polyélectroniques                                                                                | 654         |
|       | Nombres quantiques : S et $M_S$ pour les espèces polyélectroniques<br>Micro-états et termes symboliques                                               | 655<br>655  |
|       | Les nombres quantiques $J$ et $M_J$                                                                                                                   | 656         |
|       | État fondamental des éléments avec $Z = 1$ à 10<br>Le configuration $d^2$                                                                             | 657<br>650  |
|       |                                                                                                                                                       | 039         |
| 21.7  | Spectres électroniques                                                                                                                                | 660         |
|       | Absorptions de transfert de charge                                                                                                                    | 660<br>661  |
|       | Règles de sélection                                                                                                                                   | 662         |
|       | Spectres électroniques des complexes octaédriques et tétraédriques<br>Interprétation des spectres électroniques : utilisation des paramètres de Racah | 663<br>666  |
|       | Interprétation des spectres électroniques : diagrammes de Tanabe-Sugano                                                                               | 668         |
| 21.8  | Preuves de l'existence de liaisons métal-ligand covalentes                                                                                            | 669         |
|       | L'effet néphélauxétique                                                                                                                               | 669         |
|       | Spectroscopie de RPE                                                                                                                                  | 670         |
| 21.9  | Propriétés magnétiques                                                                                                                                | 670         |
|       | Susceptibilité magnétique et formule du spin seul<br>Moment magnétique orbital et moment magnétique de spin                                           | 670<br>672  |
|       | L'influence de la température sur $\mu_{eff}$                                                                                                         | 674         |
|       | Croisement de spin                                                                                                                                    | 675         |
|       | renomagneusme, anurerromagneusme et ierrimagneusme                                                                                                    | 0/0         |
| 21.10 | Aspects thermodynamiques : énergies de stabilisation du champ des liga<br>(FSCI)                                                                      | inds<br>678 |
|       | Évolutions des ESCL                                                                                                                                   | 678         |
|       | Énergies réticulaires et énergies d'hydratation des ions $M^{n+}$                                                                                     | 678         |
|       | Coordination octaédrique ou tétraédrique : spinelles                                                                                                  | 678         |

| 21.11 | Aspects thermodynamiques : la série d'Irving-Williams            | 680        |
|-------|------------------------------------------------------------------|------------|
| 21.12 | Aspects thermodynamiques : états d'oxydation en solution aqueuse | 680        |
| 22    | Chimie des métaux du bloc d : les métaux de la première rangée   | 686        |
| 22.1  | Introduction                                                     | 686        |
| 22.2  | État naturel, extraction et utilisations                         | 686        |
| 22.3  | Propriétés physiques : une vue d'ensemble                        | 690        |
| 22.4  | Groupe 3 : scandium                                              | 690        |
|       | Le métal<br>Scandium(III)                                        | 690<br>690 |
| 22.5  | Groupe 4 : titane                                                | 691        |
|       | Le métal                                                         | 691        |
|       | Titane(IV)                                                       | 692        |
|       | États d'oxydation inférieurs                                     | 694<br>695 |
| 22.6  | Groupe 5 : vanadium                                              | 695        |
|       | Le métal                                                         | 695        |
|       | Vanadium(V)                                                      | 695        |
|       | Vanadium(IV)                                                     | 696        |
|       | Vanadium(III)<br>Vanadium(II)                                    | 698<br>699 |
| 22.7  | Groupe 6 : chrome                                                | 699        |
|       | Le métal                                                         | 699        |
|       | Chrome(VI)                                                       | 699        |
|       | Chrome(V) et chrome(IV)                                          | 701        |
|       | Chrome(III)<br>Chrome(II)                                        | 703        |
|       | Liaisons multiples chrome-chrome                                 | 704        |
| 22.8  | Groupe 7 : manganèse                                             | 707        |
|       | Le métal                                                         | 707        |
|       | Manganèse(VII)                                                   | 707        |
|       | Manganèse(VI)                                                    | 709        |
|       | Manganèse(V)<br>Manganèse(IV)                                    | 709        |
|       | Manganèse(III)                                                   | 711        |
|       | Manganèse(II)                                                    | 712        |
|       | Manganèse(I)                                                     | 714        |
| 22.9  | Groupe 8 : fer                                                   | 714        |
|       | Le métal                                                         | 714        |
|       | Fer(VI), fer(V) et fer(IV)                                       | 714        |
|       | Fer(III)                                                         | /16        |
|       | Le fer dans les états d'oxydation inférieurs                     | 722        |
| 22.10 | Groupe 9 : cobalt                                                | 722        |
|       | Le métal                                                         | 722        |
|       | Cobalt(IV)                                                       | 722        |

|       | Cobalt(III)               | 722 |
|-------|---------------------------|-----|
|       | Cobalt(II)                | 725 |
| 22.44 |                           | 720 |
| 22.11 | Groupe 10 : nickel        | /29 |
|       | Le métal                  | 729 |
|       | Nickel(IV) et nickel(III) | 729 |
|       | Nickel(II)                | 730 |
|       | Nickel(I)                 | 732 |
| 22.12 | Groupe 11 : cuivre        | 732 |
| 22.12 |                           | 152 |
|       | Le métal                  | 732 |
|       | Cuivre(IV) et cuivre(III) | 733 |
|       | Cuivre(II)                | 734 |
|       | Cuivre(I)                 | 737 |
| 22.13 | Groupe 12 : zinc          | 739 |
| 22.15 | Groupe 12.1 zine          | 755 |
|       | Le métal                  | 739 |
|       | Zinc(II)                  | 739 |
|       | Zinc(I)                   | 740 |
|       |                           |     |

| 23   | Chimie des métaux du bloc <i>d</i> : les métaux de la deuxième et de la troisième rangée | 744               |
|------|------------------------------------------------------------------------------------------|-------------------|
| 23.1 | Introduction                                                                             | 744               |
| 23.2 | État naturel, extraction et utilisations                                                 | 744               |
| 23.3 | <b>Propriétés physiques</b><br>Effets de la contraction des lanthanoïdes                 | <b>749</b><br>749 |
|      | Coordinences<br>Métaux actifs en RMN                                                     | 751<br>751        |
| 23.4 | Groupe 3 : yttrium                                                                       | 751               |
|      | Le métal<br>Yttrium(III)                                                                 | 751<br>751        |
| 23.5 | Groupe 4 : zirconium et hafnium                                                          | 752               |
|      | Les métaux<br>Zirconium(IV) et hafnium(IV)                                               | 752<br>752        |
|      | États d'oxydation inférieurs du zirconium et du hafnium<br>Clusters de zirconium         | 753<br>754        |
| 23.6 | Groupe 5 : niobium et tantale                                                            | 754               |
|      | Les métaux                                                                               | 754               |
|      | Niobium(V) et tantale(V)                                                                 | 755               |
|      | Halogénures des états d'oxydation inférieurs                                             | 756<br>757        |
| 23.7 | Groupe 6 : molybdène et tungstène                                                        | 759               |
|      | Les métaux                                                                               | 759               |
|      | Molybdène(VI) et tungstène(VI)                                                           | 759               |
|      | Molybdene(V) et tungstène(V)                                                             | 763               |
|      | Molybdène(III) et tungstène(III)                                                         | 764               |
|      | Molybdène(II) et tungstène(II)                                                           | 766               |

| 23.8  | Groupe 7 : technétium et rhénium                                                                                                                 | 769 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | Les métaux                                                                                                                                       | 769 |
|       | États d'oxydation supérieurs du technétium et du rhénium : M(VII), M(VI) et M(V)                                                                 | 769 |
|       | Technétium(IV) et rhénium(IV)                                                                                                                    | 771 |
|       | Technetium(III) et rhénium(III)                                                                                                                  | 772 |
| 22.0  |                                                                                                                                                  | 775 |
| 23.9  | Groupe 8 : ruthenium et osmium                                                                                                                   | //4 |
|       | Les métaux<br>Étate d'availation que áriques du métérium et de l'acceium : M(VIII) M VII) et M(VI)                                               | 774 |
|       | Etats a oxydation superiours du rutientum et de l'osinium : $M(\sqrt{11}), M(\sqrt{11})$ et $M(\sqrt{1})$<br>Ruthénium(V) (IV) et osmium(V) (IV) | 776 |
|       | Ruthénium((V), (IV) et osmium((V), (IV)                                                                                                          | 779 |
|       | Ruthénium(II) et osmium(II)                                                                                                                      | 780 |
|       | Complexes du ruthénium à valence mixte                                                                                                           | 782 |
| 23.10 | Groupe 9 : rhodium et iridium                                                                                                                    | 783 |
|       | Les métaux                                                                                                                                       | 783 |
|       | États d'oxydation supérieurs du rhodium et de l'iridium : M(VI) et M(V)                                                                          | 783 |
|       | Rhodium(IV) et iridium(IV)                                                                                                                       | 784 |
|       | Rhodium(III) et iridium(III)                                                                                                                     | 784 |
|       | Rhodium(II) et iridium(II)<br>Rhodium(I) et iridium(I)                                                                                           | 786 |
| 23.11 | Groupe 10 : palladium et platine                                                                                                                 | 788 |
|       | Les métaux                                                                                                                                       | 788 |
|       | Les états d'oxydation supérieurs : M(VI) et M(V)                                                                                                 | 788 |
|       | Palladium(IV) et platine(IV)                                                                                                                     | 788 |
|       | Complexes du palladium(III), du platine(III) et de valence mixte                                                                                 | 789 |
|       | Palladium(II) et platine(II)                                                                                                                     | 790 |
|       | Platine(-11)                                                                                                                                     | 193 |
| 23.12 | Groupe 11 : argent et or                                                                                                                         | 794 |
|       | Les métaux                                                                                                                                       | 794 |
|       | Or(V) et argent(V)                                                                                                                               | 795 |
|       | Or(III) et argent(III)<br>Or(II) et argent(II)                                                                                                   | 795 |
|       | Or(I) et argent(I)                                                                                                                               | 797 |
|       | Or(-1) et argent(-1)                                                                                                                             | 799 |
| 23.13 | Groupe 12 : cadmium et mercure                                                                                                                   | 800 |
|       | Les métaux                                                                                                                                       | 800 |
|       | Cadmium(II)                                                                                                                                      | 800 |
|       | Mercure(II)                                                                                                                                      | 801 |
|       | Mercure(1)                                                                                                                                       | 802 |

| 24   | Composés organométalliques des éléments du bloc d         | 806 |
|------|-----------------------------------------------------------|-----|
|      |                                                           |     |
| 24.1 | Introduction                                              | 806 |
|      | Hapticité d'un ligand                                     | 806 |
| 24.2 | Types courants de ligands : liaisons et spectroscopie     | 806 |
|      | Liaisons $\sigma$ des ligands alkyle, aryle et apparentés | 806 |
|      | Ligands carbonyle                                         | 807 |
|      | Ligands hydrure                                           | 808 |
|      | Phosphine et ligands apparentés                           | 809 |
|      | Ligands organiques à liaison $\pi$                        | 811 |

|       | Monoxyde d'azote<br>Diazote<br>Dihydrogène                                                                                                                                                                        | 813<br>814<br>814                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 24.3  | La règle des 18 électrons                                                                                                                                                                                         | 815                                    |
| 24.4  | Métaux carbonyle : synthèse, propriétés physiques et structure<br>Synthèse et propriétés physiques<br>Structures                                                                                                  | <b>816</b><br>817<br>819               |
| 24.5  | Le principe isolobal et l'application des règles de Wade                                                                                                                                                          | 821                                    |
| 24.6  | Décompte total des électrons de valence dans les clusters<br>organométalliques du bloc <i>d</i><br>Structures à cage unique<br>Cages condensées<br>Limites des schémas de décompte total des électrons de valence | <b>824</b><br>824<br>826<br>826        |
| 24.7  | Types de réactions organométalliques                                                                                                                                                                              | 827                                    |
|       | Substitution des ligands CO<br>Addition oxydante<br>Migrations d'alkyle et d'hydrogène<br>Élimination de l'hydrogène en β<br>Suppression de l'hydrogène en α<br>Résumé                                            | 827<br>828<br>828<br>829<br>830<br>830 |
| 24.8  | Métaux carbonyle : quelques réactions                                                                                                                                                                             | 831                                    |
| 24.9  | Hydrures et halogénures des métaux carbonyle                                                                                                                                                                      | 832                                    |
| 24.10 | <b>Complexes alkyle, aryle alcène et alcyne</b><br>Ligands alkyle et aryle liés par liaison σ<br>Ligands alcène<br>Ligands alcyne                                                                                 | <b>833</b><br>833<br>834<br>836        |
| 24.11 | Complexes allyle et buta-1,3-diène                                                                                                                                                                                | 837                                    |
|       | Ligands allyle et apparentés<br>Buta-1,3-diène et ligands apparentés                                                                                                                                              | 837<br>839                             |
| 24.12 | Complexes carbène et carbyne                                                                                                                                                                                      | 839                                    |
| 24.13 | <b>Complexes contenant des ligands</b> $\eta^5$ -cyclopentadiényle<br>Ferrocène et autres métallocènes<br>$(\eta^5$ -Cp) <sub>2</sub> Fe <sub>2</sub> (CO) <sub>4</sub> et ses dérivés                            | <b>841</b><br>841<br>843               |
| 24.14 | Complexes contenant des ligands $\eta^6$ et $\eta^7$                                                                                                                                                              | 846                                    |
|       | Ligands $\eta^6$ -arène<br>Cyclobentatriène et ligands dérivés                                                                                                                                                    | 846<br>847                             |
| 24.15 | Complexes contenant le ligand n <sup>4</sup> -cyclobutadiène                                                                                                                                                      | 849                                    |

| 25   | Métaux du bloc f : lanthanoïdes et actinoïdes | 854 |
|------|-----------------------------------------------|-----|
|      |                                               |     |
| 25.1 | Introduction                                  | 854 |
|      |                                               |     |
| 25.2 | Orbitales f et états d'oxydation              | 855 |
|      |                                               |     |

| 25.3  | Taille des atomes et des ions                                                          | 856 |
|-------|----------------------------------------------------------------------------------------|-----|
|       | La contraction lanthanoïde                                                             | 856 |
|       | Coordinences                                                                           | 856 |
| 25.4  | Propriétés spectroscopiques et magnétiques                                             | 858 |
|       | Spectres électroniques et moments magnétiques : lanthanoïdes                           | 858 |
|       | Luminescence des complexes lanthanoïdes                                                | 860 |
|       | Spectres électroniques et moments magnétiques : actinoïdes                             | 860 |
| 25.5  | Sources des lanthanoïdes et des actinoïdes                                             | 860 |
|       | État naturel et séparation des lanthanoïdes                                            | 860 |
|       | Les actinoïdes                                                                         | 861 |
| 25.6  | Lanthanoïdes                                                                           | 862 |
| 25.7  | Composés inorganiques et complexes de coordination des lanthanoïdes                    | 863 |
|       | Halogénures                                                                            | 863 |
|       | Hydroxydes et oxydes                                                                   | 864 |
|       | Complexes de Ln(III)                                                                   | 865 |
| 25.8  | Complexes organométalliques des lanthanoïdes                                           | 866 |
|       | Complexes à liaisons $\sigma$                                                          | 866 |
|       | Complexes cyclopentadiényle                                                            | 867 |
|       | Derives bis(arene)<br>Complexes contenant le ligand n <sup>8</sup> evelocetatétraènule | 870 |
|       | Complexes contenant le rigand 1/ -cyclobetaten achyle                                  | 0/1 |
| 25.9  | Les actinoïdes                                                                         | 871 |
| 25.10 | Composés inorganiques et complexes de coordination du thorium, de                      |     |
|       | l'uranium et du plutonium                                                              | 872 |
|       | Thorium                                                                                | 872 |
|       | Uranium                                                                                | 872 |
|       | Plutonium                                                                              | 8/4 |
| 25.11 | Complexes organométalliques du thorium et de l'uranium                                 | 875 |
|       | Complexes à liaisons $\sigma$                                                          | 875 |
|       | Derives cyclopentadiényle<br>Complexes contanent le ligend $n^8$ cyclopertetétreényle  | 876 |
|       | Complexes contenant le figand η -cyclooctatetraenyle                                   | 0// |
|       |                                                                                        |     |

| 26   | Complexes des métaux du bloc d : mécanismes de réaction         | 880 |
|------|-----------------------------------------------------------------|-----|
| 26.1 | Introduction                                                    | 880 |
| 26.2 | Substitution des ligands : quelques points généraux             | 880 |
|      | Complexes cinétiquement inertes ou labiles                      | 880 |
|      | Les équations stoechiométriques ne disent rien sur le mécanisme | 881 |
|      | Types de mécanismes de substitution                             | 882 |
|      | Paramètres d'activation                                         | 882 |
| 26.3 | Substitution dans les complexes carrés plans                    | 883 |
|      | Équations de vitesse, mécanisme et effet trans                  | 883 |
|      | Nucléophilie du ligand                                          | 886 |
| 26.4 | Substitution et racémisation dans les complexes octaédriques    | 888 |
|      | Échange d'eau                                                   | 888 |

|      | Le mécanisme de Eigen-Wilkins                            | 889 |
|------|----------------------------------------------------------|-----|
|      | Stéréochimie de la substitution                          | 891 |
|      | Hydrolyse catalysée par les bases                        | 893 |
|      | Isomérisation et racémisation des complexes octaédriques | 893 |
| 26.5 | Processus de transfert électronique                      | 895 |
|      | Mécanisme de sphère interne                              | 895 |
|      | Mécanisme de subère externe                              | 897 |

| 27   | Catalyse et procédés industriels                                                          | 905 |
|------|-------------------------------------------------------------------------------------------|-----|
|      |                                                                                           |     |
| 27.1 | Introduction et définitions                                                               | 905 |
| 27.2 | Catalyse : concepts préliminaires                                                         | 905 |
|      | Profils énergétiques d'une réaction : catalysée ou non-catalysée                          | 905 |
|      | Cycles catalytiques                                                                       | 906 |
|      | Choix du catalyseur                                                                       | 908 |
| 27.3 | Catalyse homogène : métathèse des alcènes (oléfines) et des alcynes                       | 908 |
| 27.4 | Réduction par catalyse homogène de N <sub>2</sub> en NH <sub>3</sub>                      | 911 |
| 27.5 | Catalyse homogène : applications industrielles                                            | 912 |
|      | Hydrogénation des alcènes                                                                 | 912 |
|      | Synthèse Monsanto de l'acide acétique                                                     | 915 |
|      | Procédé Tennessee-Eastman pour l'anhydride acétique                                       | 917 |
|      | Hydrotormylation (Procédé Oxo)                                                            | 917 |
|      | Ongomensation des accenes                                                                 | 919 |
| 27.6 | Développement des catalyseurs homogènes                                                   | 919 |
|      | Catalyseurs supportés par des polymères                                                   | 920 |
|      | Catalyseurs biphasiques                                                                   | 920 |
|      | Clusters organométalliques du bloc d comme catalyseurs homogènes                          | 922 |
| 27.7 | Catalyse hétérogène : surfaces et interactions avec les adsorbats                         | 923 |
| 27.8 | Catalyse hétérogène : applications industrielles                                          | 925 |
|      | Polymérisation des alcènes : catalyse Ziegler-Natta et métallocènes catalyseurs           | 925 |
|      | Croissance de la chaîne carbonée dans la réaction de Fischer-Tropsch                      | 927 |
|      | Procédé Haber                                                                             | 928 |
|      | Production de SO <sub>3</sub> par le procédé de contact                                   | 929 |
|      | Pots catalytiques                                                                         | 929 |
|      | Les zeonnies comme cataryseurs de transformations organiques : les utilisations de ZSIM-5 | 930 |
| 27.9 | Catalyse hétérogène : clusters organométalliques modèles                                  | 931 |

| 28   | Quelques aspects de la chimie du solide                                         | 938 |
|------|---------------------------------------------------------------------------------|-----|
|      |                                                                                 |     |
| 28.1 | Introduction                                                                    | 938 |
| 28.2 | Défauts des réseaux solides                                                     | 938 |
|      | Types de défauts : composés stoechiométriques et composés non-stoechiométriques | 938 |

|      | Centres colorés (centres F)                             | 939 |
|------|---------------------------------------------------------|-----|
|      | Effets thermodynamiques des défauts des cristaux        | 940 |
| 28.3 | Conductivité électrique dans les solides ioniques       | 940 |
|      | Conducteurs à ion sodium et à ion lithium               | 940 |
|      | Oxydes des métaux(II) du bloc $d$                       | 942 |
| 28.4 | Supraconductivité                                       | 943 |
|      | Supraconducteurs : premiers exemples et théorie de base | 943 |
|      | Supraconducteurs de haute température                   | 944 |
|      | Phases de Chevrel                                       | 945 |
|      | Propriétés supraconductrices de MgB <sub>2</sub>        | 946 |
|      | Applications des supraconducteurs                       | 946 |
| 28.5 | Céramiques : pigments                                   | 947 |
|      | Pigments blancs (opacifiants)                           | 947 |
|      | Ajouter de la couleur                                   | 947 |
| 28.6 | Dépôt chimique en phase vapeur (CVD)                    | 947 |
|      | Silicium de haute pureté pour les semi-conducteurs      | 948 |
|      | Nitrure de bore $\alpha$                                | 949 |
|      | Nitrure et carbure de silicium                          | 949 |
|      | Semi-conducteurs III–V                                  | 949 |
|      | Dépôt de métal                                          | 951 |
|      | Enduits céramiques                                      | 951 |
|      | Pérovskites et cuprates supraconducteurs                | 952 |
| 28.7 | Fibres inorganiques                                     | 953 |
|      | Fibres de bore                                          | 953 |
|      | Fibres de carbone                                       | 954 |
|      | Fibres de carbure de silicium                           | 955 |
|      | Fibres d'alumine                                        | 956 |
| 28.8 | Nanotubes de carbone                                    | 957 |
|      |                                                         |     |

Table des matières

xxxi

| 29   | Les oligo-éléments métalliques de la vie                    | 962 |
|------|-------------------------------------------------------------|-----|
| 29.1 | Introduction                                                | 962 |
|      | Aminoacides, peptides et protéines ; un peu de terminologie | 962 |
| 29.2 | Stockage et transport des métaux : Fe, Cu, Zn et V          | 963 |
|      | Stockage et transport du fer                                | 966 |
|      | Métallothionéines : transport de certains métaux toxiques   | 969 |
| 29.3 | Le traitement de O <sub>2</sub>                             | 971 |
|      | Hémoglobine et myoglobine                                   | 971 |
|      | Hémocyanine                                                 | 973 |
|      | Hémérythrine                                                | 976 |
|      | Cytochromes P-450                                           | 977 |
| 29.4 | Processus rédox biologiques                                 | 978 |
|      | Protéines bleues à cuivre                                   | 978 |
|      | La chaîne mitochondriale de transfert électronique          | 979 |
|      | Protéines fer-soufre                                        | 981 |
|      | Cytochromes                                                 | 986 |

| 29.5 | L'ion Zn <sup>2+</sup> : l'acide de Lewis de la nature<br>Anhydrase carbonique II<br>Carboxypeptidase A<br>Carboxypeptidase G2<br>Remplacement de l'ion zinc par l'ion cobalt | <b>989</b><br>989<br>991<br>991<br>994 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|      | Appendices                                                                                                                                                                    | 999                                    |
| 1    | Lettres grecques et leur prononciation                                                                                                                                        | 1000                                   |
| 2    | Abréviations et symboles des grandeurs et des unités                                                                                                                          | 1001                                   |
| 3    | Quelques tableaux de caractères                                                                                                                                               | 1005                                   |
| 4    | Le spectre électromagnétique                                                                                                                                                  | 1009                                   |
| 5    | Isotopes naturels et abondances                                                                                                                                               | 1011                                   |
| 6    | Rayons de van der Waals, métalliques, covalents et ioniques                                                                                                                   | 1013                                   |
| 7    | Électronégativités de Pauling ( $\chi^P$ ) de quelques éléments du tableau périodique                                                                                         | 1015                                   |
| 8    | Configurations électroniques de l'état fondamental des éléments<br>et énergies d'ionisation                                                                                   | 1016                                   |
| 9    | Affinités électroniques                                                                                                                                                       | 1019                                   |

|    | •                                                                             |      |
|----|-------------------------------------------------------------------------------|------|
| 10 | Enthalpies standard d'atomisation ( $\Delta_a H^\circ$ ) des éléments à 298 K | 1020 |
| 11 | Quelques potentiels de réduction standard (298 K)                             | 1021 |

### Réponses aux problèmes non-descriptifs

1024

#### Aides pédagogiques

Allez voir http://housecroft.deboeck.com pour découvrir une documentation de valeur en ligne

#### Site web d'aide aux étudiants

- Des questions à choix multiple pour vous aider à tester vos connaissances
- Des structures tridimensionnelles orientables, prises dans le livre et signalées par le pictogramme 🚺
- Un tableau périodique interactif

Ce site fournit également les services suivants

- Un outil de recherche pour localiser des entrées particulières dans le contenu
- Un courriel et des outils d'évaluation pour envoyer aux instructeurs les résultats des questionnaires
- Une assistance pour faciliter l'utilisation et le dépannage de ce site web
- Un site compagnon est destiné aux professeurs, pour y avoir accès il vous suffit d'en faire la demande via notre adresse : info@universite.deboeck.com

#### Les exercices autodidactiques permettent aux étudiants de vérifier qu'ils ont compris ce qu'ils ont lu.

Chacune de ces es zène, la borazine ( Expliquez pourque rotation d'ordre 6.

elle possède a uture H<sub>2</sub>O et

itre 4 • Opérations de symétrie et éléments de symétrie 89



Les définitions-clés sont mises en valeur dans le texte

Des exemples résolus sont donnés à travers tout le texte



photographies en couleurs, relient la chimie inorganique à des exemples réels sur les ressources de l'environnement, la biologie et la médecine, illustrent des applications et donnent des informations sur les techniques expérimentales, ainsi que sur le contexte chimique et théorique.

« problèmes généraux », recouvrent une grande partie du contenu du chapitre

## Avant-propos

La troisième édition de Chimie Inorganique n'est pas radicalement différente de la deuxième édition et notre principal objectif consiste à donner les bases des théories et des principes physiques inorganiques, suivies de la chimie descriptive des éléments, et en terminant par un certain nombre de sujets plus spécialisés. Avec l'évolution actuelle vers le développement de la science des matériaux ou des sciences de la vie, il est tentant d'ajouter des chapitres supplémentaires sur, par exemple, les nanosciences et la chimie de l'environnement. Étant donné qu'un grand nombre d'excellents ouvrages dédiés à ces sujets sont maintenant disponibles, nous pensons qu'il est plus utile de dédier les pages de Chimie Inorganique à la chimie inorganique fondamentale, les liens avec la science des matériaux, les sciences de la vie, les applications quotidiennes et l'industrie étant réalisés par des discussions dans des encadrés comportant les références-clés de la littérature. En passant de la deuxième à la troisième édition du livre, ces discussions ont été améliorées visuellement par l'introduciton de photographies. Un renforcement de l'étude des techniques expérimentales constitue un changement significatif par rapport aux précédentes éditions de Chimie Inorganique. Outre une description détaillée de la spectroscopie de résonance magnétique nucléaire (RMN), des méthodes comme la diffraction des rayons X, la diffraction des électrons, la spectroscopie Raman et la spectroscopie photoélectroniques ont été traitées dans les encadrés de la deuxième édition. Dans cette édition, on a développé ces études et on a ajouté d'autres techniques (p. ex. les méthodes informatiques, la voltampérométrie cyclique, la RPE (résonance paramagnétique électronique), la chromatographie liquide à haute performance (HPLC), la microscopie électronique en transmission).

Les caractéristiques pédagogiques de la deuxième édition de *Chimie Inorganique* ont contribué à rendre ce livre populaire parmi les professeurs et les étudiants. En réponse à leurs remarques, nous avons augmenté le nombre d'exercices autodidactiques, en les utilisant pour resserrer les liens entre la chimie descriptive et la théorie. Ces changements ont été bien acceptés et en conséquence, nous avons développé encore plus l'étude de la spectroscopie vibrationnelle pour y inclure l'utilisation des tableaux de caractères pour déterminer les symboles de symétrie des modes de vibration, et en déduire les modes actifs en IR et/ou en Raman. Nous avons également considérablement modifié l'étude des termes symboliques et des micro-états dans l'introduction à la spectroscopie électronique des complexes des métaux du bloc d.

Au cours de l'écriture des trois éditions de *Chimie Inorganique*, l'IUPAC a présenté une vaste gamme de recommandations dans une série de rapports. L'un des changements provient des recommandations de 2001 de l'IUPAC sur l'écriture des déplacements chimiques en spectroscopie de RMN. la recommandation d'écrire par exemple  $\delta$  6,0 ppm inverse la recommandation précédente (1972) de reporter la valeur sous la forme  $\delta$  6,0. La nouvelle édition de *Chimie Inorganique* intègre la recommandation de 2001. Une révision essentielle de la nomenclature en chimie inorganique a été publiée dans les recommandations 2005 de l'IUPAC, et nous sommes reconnaissants au Professeur Neil Connelley d'avoir répondu à une grand nombre de nos questions. Après les avoir soigneusement examinés, nous avons décidé d'adopter certains changements, mais pas tous. Les termes les plus obsolètes (par exemple tétrahydroborate, maintenant tétrahydruroborate en accord avec tétrahydruroaluminate) ont été éliminés de ce livre, , et l'encadré 7.2 donne des exemples de *nomenclature additive*. Nous prendrons en compte d'autres changements de nomenclature dans les futures éditions de *Chimie Inorganique*. À *intervalles réguliers, l'IUPAC met à jour les masses atomiques, et la troisième édition de notre texte est en accord avec le dernier rapport (M.E. Wieser (2006) Pure Appl. Chem.*, vol. 78, p. 2 051.

Comme dans les éditions précédentes de *Chimie Inorganique*, les structures moléculaires 3D ont été dessinées en utilisant les coordonnées atomiques de Cambridge Crystallographic Data Base et mises en oeuvre par l'ETH de Zürich, ou de la Protein Data Bank (http://www.rscb.org/pdb).

Le site web qui accompagne l'édition anglaise contient des sites pour les étudiants et pour les enseignants ; on peut y accéder par http://housecroft.deboeck.com.

Outre la commission de relecture établie par l'éditeur, nous sommes très reconnaissants aux nombreux collègues qui ont porté à notre attention leurs idées, leurs commentaires et leurs critiques. En plus de ceux que nous avons remerciés dans les préfaces de la première et de la deuxième édition, nous englobons dans nos remerciements les Professeurs, Duncan Bruce, Wayne Gladfelter, Henry Rzepa, Helmut Sigel, Tim Hughbanks et Gregory Robinson, et le Dr Owen Curnow, le Dr Clive Oppenheimer et le Professeur Gilbert Gordon pour leur réponse positive à nos demandes de tirages à part de leurs travaux, et nous remercions le Professeur Gary Long pour nous avoir fourni des figures pour illustrer la spectroscopie Mössbauer et le Professeur Derek Corbridge pour une copie de Phosphorus World. Un grand nombre de collègues ont donné de leur temps pour lire des parties du texte ou pour discuter de l'approche pédagogique de divers sujets. Nous devons des remerciements particuliers aux Professeurs John P. Maier, Greg Jackson, Silvio Decurtins et au Dr Cornelia Palivan. La production de Chimie Inorganique n'aurait pas été possible sans le travail dévoué de l'équipe de Pearson Education. Pour la troisième édition, non remerciements particuliers vont à Kevin Ancient, Melanie Beard, Pauline Gillett, Kay Holman, Martin Klopstock, Simon Lake, Mary Lince, Paul Nash, Julian Pertridge, Darren Prentice et Ros Woodward.

L'une d'entre nous a passé beaucoup de temps à discuter avec son mari, Edwin Constable. Ses contributions critiques, en particulier pour les termes symboliques et les façons d'enseigner les micro-états, sont très précieuses. Enfin, ce livre est dédié à Philby. Après seize années de contributions aux livres de chimie, il a laissé sa soeur, Isis, superviser l'achèvement de ce projet. Elle est restée et a dormi à côté de l'ordinateur pendant toute l'écriture, apportant à l'occasion son aide à la façon d'un chat lorsqu'elle sentait que c'était nécessaire.

> Catherine E. Housecroft (Bâle) Alan G. Sharpe (Cambridge) Mars 2007

Dans les structures tridimensionnelles, sauf indication contraire, le code de couleurs ci-dessous est utilisé : C, gris ; H, blanc ; O, rouge ; N, bleu ; F et Cl, vert ; S, jaune ; P, orange ; B, bleu.



Nous remercions les titulaires des droits d'auteur ci-dessous pour leur permission de reproduire du matériel protégé :

Figure 21.24 de Introduction to Ligand Fields, New York : Interscience, (Figfgis, B.N. 1966)

Photographies: Figure 1.2, Dept of Physics, Imperial College/Science Photo Library ; encadrés 3.1, 13.5 et 23.7 David Parker/Science Photo Library : encadrés 3.2 et 25.1 Lawrence Livermore Laboratory/Science Photo Library; encadré 3.3 GJLP/Science Photo Library; encadré 4.1 U.S. Dept of Energy/Science Photo Library ; encadré 5.1 Tom Pantages ; encadrés 5.3 et 22.9, © the Nobel Foundation ; encadré 6.1 Heini Schneebeli/Science Photo Library ; encadré 6.2 © Ted Soqui/Corbis ; encadré 6.3 Maximilian Stock Ltd/Science Photo Library ; encadrés 6.5 et 14.15 C.E. Housecroft ; encadré 8.2 Emma L. Dunphy ; encadrés 5.4 et 11.1 Getty ; encadré 9.2 NASA/Science Photo Library; encadré 10.1 Marl Garlick/Science Photo Library; encadré 10.2 Martin Bond/Science Photo Library ; encadré 11.2 National Institute of Standards and Technology (NIST); encadrés 11;3 et 14.6 E.C. Constable; encadré 11.4 James Holmes, Hays Chemicals/Science Photo Library ; encadré 12.2 @Anthony Vizard ; Eye Ubiquitous/ CORBIS ; encadré 12.5 © Vincon/Klein/plainpicture/Corbis ; encadré 12.6 © PHOTOTAKE INc./Alamy; encadré 13.7 NASA Headquarters - Greatest Images of NASA (NASA-HQ-GRIN) ; encadré 13.8 de X. Wang et al. (2003) Synthesis of high quality inorganic fullerenelike BN hollow spheres via a simple chemical route, Chem. Commun., p. 2688. Reproduit avec la permission de the Royal Society of Chemistry; encadré 14.3 © Roger Ressmeyer/CORBIS; encadrés 14.4 et 16.3 Photolibrary ; encadré 14.8 NASA ; encadré 14;10 Pascal Geotgheluck// Science Photo Library ; encadré 14.11 Scimat//Science Photo Library ; encadré 14.12 © Jason Hawkes/CORBIS ; encadré 14.14 @ nancy Kaszerman/ZUMMA/Corbis ; encadré 15.3 @ Grant Heilman/Alamy; encadrés 15.7 et 23.2 © Reuters/CORBIS; encadré 15.8 Charles D. Winters// Science Photo Library ; encadré 16.4 © SCPhotos/Alamy ; encadré 16.5 © Paul Almasy/ CORBIS ; encadré 16.5 USGS/Cascades Volcano Observatory/ Michael P. Doukas ; encadrés 17.2 et 23.3 Scott Camazine/Science Photo Library ; encadré 17.3 © Ricki Rosen/CORBIS SABA; encadré 18.1 Philippe plailly/Eurelios/Science Photo Library; encadré 18.2 claus lunau/Bonnier Publications/Science Photo Library; encadré 19.3 © Stock Connection/Alamy; encadré 22.2 Chris Shinn c/o Mira ; encadré 22.4 Hank Morgan/Science Photo Library ; encadré 22.5 Pearson Education/PH College ; encadré 22.7 © Ralph White/CORBIS ; encadré 22.8 © Micro Discovery/Corbis ; encadré 22.10 Dorling Kindersley Media Library © Judith Miller/ Dorling Kindersley/Sloan's ; encadré 23.1 © DOCUMENT GENERAL MOTORS/REUTER R/CORBIS SYGMA DETROIT ; encadré 23.11 Eye of Science/Science Photo Library ; encadré 24.5 Hattie Young/Science Photo Library ; figure 28.20 Rosenfeld Images Ltd/Science Photo Library ; figure 28.24 Delft University of Technology/Science Photo Library ; encadré 29.1 © Herbert Zettl/zefa/Corbis ; encadré 29.2 Sinclair Stammers/Science Photo Library.

Dans quelques cas, nous avons été incapables de retrouver les propriétaires du droit d'auteur et nous apprécierions toute information qui nous permettrait de le faire.

Chapitre

## **Concepts fondamentaux : les atomes**

#### SUJETS ABORDÉS

- Particules fondamentales
- Numéro atomique, nombre de masse et isotopes
- Vue d'ensemble de la théorie quantique
- Orbitales de l'atome d'hydrogène et nombres quantiques
- L'atome polyélectronique, le principe de construction et les configurations électroniques
- Le tableau périodique
- Énergies d'ionisation et affinités électroniques

#### 1.1 Introduction

#### La chimie inorganique n'est pas un domaine isolé de la chimie

Si on considère que la chimie organique est la « chimie du carbone », la chimie inorganique est alors la chimie de tous les éléments autres que le carbone. C'est vrai en général, mais il y a évidemment des recouvrements entre ces domaines de la chimie. Un exemple d'actualité est la chimie des *fullerènes* (**paragraphe 14.4**) comme le C<sub>60</sub> (**figure 14.5**) et le C<sub>70</sub>; c'était l'objet du prix Nobel 1996 attribué aux professeurs Sir Harry Kroto, Richard Smalley et Robert Curl. Pour comprendre ces molécules et des espèces voisines appelées *nanotubes* (**paragraphe 28.8**), des chimistes organiciens, des chimistes inorganiciens et des physicochimistes ainsi que des physiciens et des spécialistes des matériaux doivent les étudier.

La chimie inorganique n'est pas simplement l'étude des éléments et de leurs composés ; c'est aussi l'étude de principes physiques. Par exemple, pour comprendre pourquoi certains composés sont solubles dans un solvant donné et pourquoi d'autres ne le sont pas, nous appliquons les lois de la thermodynamique. Si nous désirons proposer les détails d'un mécanisme réactionnel, nous devons connaître la cinétique de la réaction. Le recouvrement entre la chimie physique et la chimie inorganique est également important pour l'étude des structures moléculaires. À l'état solide, les méthodes de diffraction des rayons X sont utilisées couramment pour obtenir des représentations de la disposition des atomes d'une molécule ou d'un ion moléculaire. Pour interpréter le comportement des molécules en solution, nous utilisons des techniques physiques comme la spectroscopie de résonance magnétique nucléaire (RMN); l'équivalence ou la non-équivalence de noyaux particuliers à l'échelle de temps de la spectroscopie indique si une molécule est statique ou si elle subit un processus dynamique (**paragraphe 3.11**). Dans cet ouvrage, nous décrivons les *résultats* de ces expériences, mais nous n'étudierons pas, en général, les théories sous-jacentes. Plusieurs ouvrages qui traitent des détails expérimentaux de ces techniques sont listés à la fin des chapitres 1 à 3.

#### Les buts des chapitres 1 et 2

Dans les chapitres 1 et 2, nous exposons brièvement quelques concepts importants pour la compréhension de la chimie inorganique. Nous avons supposé que le lecteur est familiarisé dans une certaine mesure avec la plupart de ces concepts et nous voulons lui donner un point de référence pour des révisions.

#### 1.2 Particules fondamentales de l'atome

L'atome est la plus petite quantité d'un élément capable d'exister, seule ou en combinaison chimique avec d'autres atomes du même élément ou d'autres éléments. Les particules fondamentales qui constituent l'atome sont le *proton*, l'*électron* et le *neutron*.

Le neutron et le proton ont à peu près la même masse et, comparée à celle-ci, la masse de l'électron est négligeable (tableau 1.1). La charge du proton est positive et de même grandeur que celle de l'électron chargé négativement, mais de signe opposé ; le neutron n'est pas chargé. L'atome de tout élément contient des nombres égaux de protons et d'électrons, et l'atome est donc neutre. Le *noyau* de l'atome est constitué de protons et (sauf dans le cas du *protium*, **paragraphe 10.3**) de neutrons, et est chargé positivement ; le noyau du protium est constitué d'une seul proton. Les électrons occupent une région de l'espace autour du noyau. Presque toute la masse de l'atome est concentrée dans le noyau, mais le volume

| TIOTON                      | Electron                                                      | Neutron                                                                                                               |
|-----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| + 1,602 × 10 <sup>-19</sup> | $-1,602 \times 10^{-19}$                                      | 0                                                                                                                     |
| 1                           | - 1                                                           | 0                                                                                                                     |
| $1,673 \times 10^{-27}$     | $9,109 \times 10^{-31}$                                       | $1,673 \times 10^{-27}$                                                                                               |
| 1 837                       | 1                                                             | 1 839                                                                                                                 |
|                             | + $1,602 \times 10^{-19}$<br>1<br>1,673 × $10^{-27}$<br>1 837 | + $1,602 \times 10^{-19}$ - $1,602 \times 10^{-19}$<br>1 - 1<br>$1,673 \times 10^{-27}$ 9,109 × $10^{-31}$<br>1 837 1 |

 Tableau 1.1
 Propriétés du proton, de l'électron et du neutron

du noyau n'est qu'une minuscule fraction de celui de l'atome ; le rayon du noyau est d'environ  $10^{-15}$  m alors que l'atome lui-même est environ  $10^5$  plus grand. La densité du noyau est donc énorme, plus de  $10^{12}$  fois celle du plomb métallique.

Bien que les chimistes aient tendance à considérer que l'électron, le neutron et le proton sont les particules fondamentales (ou élémentaires) de l'atome, les physiciens des particules ne seraient pas d'accord, car leurs recherches montrent la présence de particules encore plus petites.

## **1.3** Numéro atomique, nombre de masse et isotopes

## Nucléides, numéro atomique et nombre de masse

Un nucléide est un type particulier d'atome et possède un *numéro atomique* caractéristique, Z, qui est égal au nombre de protons du noyau ; comme l'atome est électriquement neutre, Z est aussi égal au nombre d'électrons. Le *nombre de masse A* d'un nucléide est le nombre de protons *et* de neutrons du noyau. Un raccourci pour montrer le numéro atomique et le nombre de masse d'un nucléide avec son symbole E consiste à écrire :

Nombre de masse 
$$\longrightarrow_{Numéro atomique}^{A} E \longrightarrow_{Z}^{A}$$
 Symbole de l'élément p.ex.  $^{20}_{10}$  Ne  
Numéro atomique = Z = nombre de protons du noyau = nombre d'électrons  
Nombre de masse = A = nombre de protons + nombre de neutrons  
Nombre de neutrons = A = Z

#### Masse atomique relative

Comme la masse des électrons est minuscule, la masse d'un atome dépend principalement du nombre de protons et de neutrons du noyau. Comme le montre le tableau 1.1, la masse d'un atome est un très petit nombre, non entier, et on adopte par commodité un système de *masses atomiques relatives*. Nous définissons l'unité de masse atomique comme 1/12 de la masse d'un atome de  ${}_{6}^{12}$ C, soit 1,660 × 10<sup>-27</sup> kg. Les *masses atomiques relatives* ( $A_r$ ) sont donc

toutes établies par rapport à  ${}^{12}_{6}C = 12,0000$ . On peut considérer que les masses du proton et du neutron sont  $\approx 1$  u où u est l'*unité de masse atomique* (1 u  $\approx 1,660 \times 10^{-27}$  kg).

#### Isotopes

Les nucléides d'un même élément possèdent le même nombre de protons et d'électrons mais peuvent avoir des nombres de masse différents ; le nombre de protons et d'électrons définit l'élément, mais le nombre de neutrons peut varier. On appelle isotopes (**appendice 5**) les nucléides d'un élément donné qui diffèrent par le nombre de neutrons et par conséquent par leur nombre de masse. Les isotopes de certains éléments sont naturels alors que d'autres peuvent être produits artificiellement.

Des éléments qui ont un seul nucléide à l'état naturel sont *monotopiques*, comme le phosphore,  ${}^{31}_{15}P$ , et le fluor,  ${}^{19}_{9}F$ . Les éléments qui sont constitués d'un mélange d'isotopes comprennent C ( ${}^{12}_{6}C$  et  ${}^{13}_{6}C$ ) et O ( ${}^{16}_{8}O$ ,  ${}^{17}_{8}O$  et  ${}^{18}_{8}O$ ). Comme le numéro atomique est constant pour un même élément, on ne distingue souvent les isotopes qu'en notant leur masse atomique, p.ex.  ${}^{12}C$  et  ${}^{13}C$ .

#### Exemple résolu 1.1 Masse atomique relative

Calculez la valeur de  $A_r$  pour le chlore naturel si la répartition des isotopes est 75,77 % de  $^{35}_{17}$ Cl et 24,23 % de  $^{37}_{17}$ Cl. Les masses précises de  $^{35}$ Cl et de  $^{37}$ Cl sont 34,97 et 36,97.

La masse atomique relative du chlore est la moyenne pondérée des nombres de masse des deux isotopes :

Masse atomique relative,

$$A_{\rm r} = \left(\frac{75,77}{100} \times 34,97\right) + \left(\frac{24,23}{100} \times 36,97\right) = 35,45$$

#### **Exercices autodidactiques**

- 1. Si  $A_r = 35,45$  pour Cl, quel est le rapport  ${}^{35}\text{Cl}{}^{37}\text{Cl}$  dans un échantillon d'atomes de chlore contenant du Cl naturel ? [*Rép.* 3,17/1]
- 2. Calculez la valeur de  $A_r$  pour le Cu naturel si la répartition des isotopes est 69,2 % de <sup>63</sup>Cu et 30,8 % de <sup>65</sup>Cu ; les masses précises sont 62,93 et 64,93. [*Rép.* 63,5]

#### CONTEXTE CHIMIQUE ET THÉORIQUE

#### Encadré 1.1 Isotopes et allotropes

Ne confondez pas *isotope* et *allotrope* ! Le soufre présente à la fois des isotopes et des variétés allotropiques ou allotropes. Les isotopes du soufre (avec les pourcentages des abondances naturelles) sont  ${}^{32}_{16}S$  (95,02 %),  ${}^{33}_{16}S$  (0,75 %),  ${}^{34}_{16}S$  (4,21 %) et  ${}^{36}_{16}S$  (0,02 %).

du soufre comprennent des structures cycliques, p.ex. S<sub>6</sub> (voir cidessous) et S<sub>8</sub> (**figure 1.1c**), et des chaînes S<sub>x</sub> de différentes longueurs (poly*catena*soufre).

Les variétés allotropiques d'un corps simple sont des variétés structurales différentes de ce corps simple. Les variétés allotropiques

D'autres exemples d'isotopes et de variétés allotropiques apparaîtront à travers cet ouvrage.

 $S_6$  Une partie de la chaîne hélicoïdale de  $S_{\alpha}$ 

- 3. Pourquoi est-il correct dans la question 2 d'écrire <sup>63</sup>Cu plutôt que <sup>63</sup><sub>29</sub>Cu ?
- 4. Calculez  $A_r$  pour le Mg naturel si la répartition des isotopes est 78,99 % de <sup>24</sup>Mg, 10,00 % de <sup>25</sup>Mg et 11,01 % de <sup>26</sup>Mg ; les masses précises sont 23,99, 24,99 et 25,98. [*Rép.* 24,31]

On peut séparer les isotopes par *spectrométrie de masse* et la figure 1.1a donne la répartition isotopique du Ru naturel. Comparez ce diagramme (dans lequel l'isotope le plus abondant est mis à 100) avec les valeurs notées dans l'**appendice 5**. La figure 1.1b présente un spectre de masse de S<sub>8</sub> moléculaire dont la structure est représentée par la figure 1.1c; on observe cinq pics dûs aux combinaisons des isotopes du soufre. (Voir le **problème 1.5** à la fin de ce chapitre.)

Les isotopes d'un élément ont le même numéro atomique Z mais des masses atomiques différentes.

## **1.4** Les succès de la première théorie quantique

Nous avons vu dans le paragraphe 1.2 que les électrons d'un atome occupent la région de l'espace autour du noyau. À cause de l'importance des électrons pour la détermination des propriétés des atomes, des ions et des molécules, telles que les liaisons entre eux ou à l'intérieur de ceux-ci, nous devons comprendre la structure électronique de chaque espèce. Aucune étude adéquate de la structure électronique n'est possible sans faire référence à la *théorie quantique* et à la *mécanique ondulatoire*. Dans ce paragraphe et dans les quelques paragraphes suivants, nous passons en revue certains



Fig. 1.1 Traces en spectrométrie de masse de (a) Ru atomique et (b)  $S_8$  moléculaire ; le rapport masse/charge est *m/z* et dans ces traces, z = 1. (c) Structure moléculaire de  $S_8$ .

des principaux concepts. Le traitement est essentiellement qualitatif, et pour une étude plus détaillée et un traitement plus rigoureux des relations mathématiques, il faudrait consulter les références à la fin du chapitre 1.

Le développement de la théorie quantique s'est fait en deux étapes. Dans les théories les plus anciennes (1900-1925), l'électron était traité comme une particule et les réussites les plus importantes pour la chimie inorganique ont été l'interprétation des spectres atomiques et l'attribution des configurations électroniques. Dans les modèles plus récents, l'électron est traité comme une onde (d'où le nom de *mécanique ondulatoire*) et les principaux succès pour la chimie sont l'élucidation des bases de la stéréochimie et les méthodes de calcul des propriétés des molécules (exactes *seulement* pour les espèces mettant en jeu des atomes légers).

Puisque tous les résultats obtenus en utilisant l'ancienne théorie quantique peuvent aussi être obtenus par la mécanique ondulatoire, il peut sembler inutile de se référer à la première ; de fait, les descriptions évoluées de chimie théorique le font rarement. Toutefois, la plupart des chimistes trouvent souvent plus facile et plus commode de considérer l'électron comme une particule plutôt que comme une onde.

## Quelques succès importants de la théorie quantique classique

On peut trouver ailleurs les discussions historiques sur les développements de la théorie quantique, et nous ne nous concentrerons que sur certains points de la théorie quantique classique (dans laquelle l'électron est considéré comme une particule).

Aux basses températures, le rayonnement émis par un corps chaud est principalement de faible énergie et se produit dans l'infrarouge, mais à mesure que la température augmente le rayonnement devient successivement rouge sombre, rouge clair et blanc. Les tentatives d'explication de cette observation ont échoué jusqu'à ce que, en 1901, Planck suggère que l'énergie ne pouvait être émise ou absorbée qu'en quanta dont la grandeur  $\Delta E$  est reliée à la fréquence v du rayonnement par l'équation 1.1. La constante de proportionnalité est h, la constante de Planck ( $h = 6,626 \times 10^{-34}$  J.s).

 $\Delta E = hv \qquad \text{Unités} : E \text{ en } \text{J} ; v \text{ en } \text{s}^{-1} \text{ ou } \text{Hz}$ (1.1)

$$c = \lambda v$$
 Unités :  $\lambda$  en m ;  $v$  en s<sup>-1</sup> ou Hz (1.2)

Le hertz, Hz, est l'unité SI de fréquence.

Puisque la fréquence du rayonnement est reliée à la longueur d'onde  $\lambda$  par l'équation 1.2 où c est la vitesse de la lumière dans le vide ( $c = 2,998 \times 10^8 \text{ m.s}^{-1}$ ), on peut récrire l'équation 1.1 sous la forme de l'équation 1.3 et relier l'énergie du rayonnement à sa longueur d'onde.

$$\Delta E = \frac{hc}{\lambda} \tag{1.3}$$

Sur la base de cette relation, Planck a déduit une relation intensité/longueur d'onde/température qui était en bon accord avec les données expérimentales. Cette relation n'est pas simple et nous ne la reproduirons pas ici.

L'une des applications les plus importantes de la première théorie quantique fut l'interprétation du spectre atomique de l'hydrogène à partir du modèle de l'atome de Bohr-Rutherford. Lorsqu'on fait passer une décharge électrique à travers un échantillon de dihydrogène, les molécules  $H_2$  se dissocient en atomes, et l'électron d'un atome H *excité* particulier peut être *promu* vers l'un des nombreux niveaux de haute énergie. Ces états sont transitoires et l'électron retombe à un état de plus basse énergie en émettant de l'énergie. En conséquence, on observe des *raies spectrales* dans le spectre d'émission de l'hydrogène ; le spectre (dont une partie est représentée par la figure 1.2) est constitué de groupes de raies discrètes correspondant aux transitions électroniques, chacune ayant



Fig. 1.2 Schéma d'une partie du spectre d'émission de l'hydrogène montrant les séries de raies d'émission de Lyman, Balmer et Paschen. La photographie montre les raies prédominantes dans la partie visible du spectre de l'hydrogène, qui apparaissent à 656,3 nm (rouge), 486,1 nm (cyan) et 434,0 nm (bleu). Les autres raies, plus faibles, ne sont pas visibles sur cette photographie. *Photo : Dept of Physics, Imperial College/Science Photo Library*  une énergie discrète. Déjà en 1885, Balmer avait remarqué que les longueurs d'onde des raies spectrales observées dans la région visible du spectre atomique de l'hydrogène obéissaient à l'équation 1.4 où R est la constante de Rydberg pour l'hydrogène,  $\overline{v}$  le nombre d'onde en cm<sup>-1</sup> et n un entier 3, 4, 5... Cette série de raies spectrales est appelée *série de Balmer*.

Nombre d'onde = inverse de la longueur d'onde ; une unité commode (unité non SI) est l'inverse du centimètre, le  $cm^{-1}$ .

$$\overline{\nu} = \frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right) \tag{1.4}$$

R = constante de Rydberg pour l'hydrogène $= 1,097 \times 10^7 \text{ m}^{-1} = 1,097 \times 10^5 \text{ cm}^{-1}$ 

D'autres séries de raies spectrales se trouvent dans l'ultraviolet (série de Lyman) et dans l'infrarouge (séries de Paschen, de Brackett et de Pfund). Toutes les raies de toutes les séries obéissent à l'expression générale donnée par l'équation 1.5 où n' > n. Pour la série de Lyman, n = 1, pour la série de Balmer, n = 2, et pour les séries de Paschen, de Brackett et de Pfund, n = 3, 4 et 5 respectivement. La figure 1.3 représente quelques-unes des transitions permises des séries de Lyman et de Balmer du spectre d'émission de H atomique. Notez l'utilisation du terme *permises* ; les transitions doivent obéir aux *règles de sélection*, sur lesquelles nous revenons au **paragraphe 21.7**.

$$\overline{v} = \frac{1}{\lambda} = R \left( \frac{1}{n^2} - \frac{1}{{n'}^2} \right)$$
(1.5)

#### Théorie de Bohr du spectre atomique de l'hydrogène

En 1913, Niels Bohr a combiné des éléments de la théorie quantique avec la physique classique pour étudier l'atome d'hydrogène. Il a énoncé deux postulats sur l'électron dans l'atome :

Il existe des états stationnaires dans lesquels l'énergie de l'électron est constante ; ces états sont caractérisés par des orbites circulaires autour du noyau dans lesquelles l'électron a un moment angulaire mvr donné par l'équation 1.6. Le nombre entier n est le nombre quantique principal

$$mvr = n \left(\frac{h}{2\pi}\right) \tag{1.6}$$

avec m = masse de l'électron ; v = vélocité de l'électron ; r = rayon de l'orbite ; h = constante de Planck ;  $h/2\pi$  peut être s'écrire  $\hbar$ .

 L'énergie n'est absorbée ou émise que lorsqu'un électron passe d'un état stationnaire à un autre et la variation d'énergie est donnée par l'équation 1.7 où n<sub>1</sub> et n<sub>2</sub> sont les nombres



Fig. 1.3 Quelques-unes des transitions qui constituent les séries de Lyman et de Balmer du spectre d'émission de l'hydrogène atomique.

quantiques principaux relatifs aux niveaux d'énergie  $E_{n_1}$  et  $E_{n_2}$  respectivement.

$$\Delta E = E_{n_2} - E_{n_1} = hv \tag{1.7}$$

Si nous appliquons le modèle de Bohr à l'atome H, le rayon de chaque orbite permise peut être déterminé par l'équation 1.8. Cette expression provient de la force centrifuge qui s'exerce sur l'électron lorsqu'il se déplace sur son orbite circulaire ; pour que l'orbite se maintienne, il faut que la force centrifuge soit égale à la force d'attraction entre l'électron chargé négativement et le noyau chargé positivement.

$$r_n = \frac{\varepsilon_0 h^2 n^2}{\pi m_e e^2} \tag{1.8}$$

où  $\varepsilon_0 = \text{permittivité du vide}$ 

= 8,854 × 10<sup>-12</sup> F.m<sup>-1</sup> *h* = constante de Planck = 6,626 × 10<sup>-34</sup> J.s *n* = 1, 2, 3... décrit une orbite donnée *m<sub>e</sub>* = masse au repos de l'électron = 9,109 × 10<sup>-31</sup> kg *e* = charge de l'électron (charge élémentaire) = 1,602 × 10<sup>-19</sup> C

En introduisant n = 1 dans l'équation 1.8, on obtient pour la première orbite de l'atome H un rayon de  $5,293 \times 10^{-11}$  m, soit 52,93 pm. On appelle cette valeur *rayon de Bohr* de l'atome H et on lui donne le symbole  $a_0$ .

L'augmentation du nombre quantique principal de n = 1 à  $n = \infty$ a une signification particulière. Elle correspond à l'ionisation de l'atome (équation 1.9) et on peut déterminer l'énergie d'ionisation, *EI*, en combinant les équations 1.5 et 1.7 comme le montre l'équation 1.10. Les valeurs des *EI* sont données *par mole d'atomes*.

Une mole de substance contient le nombre d'Avogadro, *L*, de particules :  $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ 

 $H(g) \to H^+(g) + e^- \tag{1.9}$ 

$$EI = E_{\infty} - E_1 = \frac{hc}{\lambda} = hcR\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right)$$
(1.10)  
= 2,179 × 10<sup>-18</sup> J  
= 2,179 × 10<sup>-18</sup> × 6,022 × 10<sup>23</sup> J.mol<sup>-1</sup>  
= 1,312 × 10<sup>6</sup> J.mol<sup>-1</sup>  
= 1,312 kJ.mol<sup>-1</sup>

Bien que l'unité SI d'énergie soit le joule, les énergies d'ionisation sont souvent exprimées en électron-volts (eV) (1 eV = 96,4853  $\approx$  96,5 kJ.mol<sup>-1</sup>). On peut donc noter que l'énergie d'ionisation de l'hydrogène est de 13,60 eV.

Si impressionnant que fût le succès du modèle de Bohr appliqué à l'atome H, d'importantes modifications étaient nécessaires pour traiter les espèces contenant plus d'un électron. Nous n'irons pas plus loin sur ce sujet.

## **1.5** Une introduction à la mécanique ondulatoire

#### La nature ondulatoire des électrons

La théorie quantique du rayonnement présentée par Max Planck et Albert Einstein implique une théorie corpusculaire de la lumière, en plus de la théorie ondulatoire de la lumière justifiée par les phénomènes de diffraction et d'interférence. En 1924, Louis de Broglie affirma que si la lumière était constituée de particules tout en présentant des propriétés ondulatoires, il devait en être de même pour les électrons et pour les autres particules. On appelle ce phénomène la *dualité onde-particule*. La relation de de Broglie (équation 1.11) combine les concepts de la mécanique classique avec l'idée des propriétés ondulatoires en montrant qu'une particule dont la quantité de mouvement est mv (m = masse et v = vélocité de la particule) possède une onde associée de longueur d'onde  $\lambda$ .

$$\lambda = \frac{h}{mv}$$
 où *h* est la constante de Planck (1.11)

Une observation physique importante, qui est une conséquence de la relation de de Broglie, est que des électrons accélérés à une vélocité de  $6 \times 10^6$  m.s<sup>-1</sup> (par une différence de potentiel de 100 V) possèdent une longueur d'onde associée de  $\approx$  120 pm, et que ces électrons sont diffractés lorsqu'ils traversent un cristal. Ce phénomène est à la base des techniques de diffraction des électrons utilisées pour déterminer la structure des composés chimiques (encadré 1.2).

#### Le principe d'incertitude

Si l'électron a des propriétés ondulatoires, une conséquence importante et gênante apparaît : il devient impossible de connaître exactement à la fois la quantité de mouvement et la position de l'électron *au même instant*. C'est ce qu'affirme le *principe d'incertitude* de Heisenberg. Afin de contourner ce problème, plutôt que d'essayer de définir exactement sa position et sa quantité de mouvement, nous définissons la *probabilité de présence* de l'électron dans un volume donné. La probabilité de présence d'un électron en un point donné de l'espace est déterminée par la fonction  $\psi^2$ , où  $\psi$  est une fonction mathématique qui décrit le comportement de l'onde électronique ;  $\psi$  est la *fonction d'onde*.

La probabilité de présence d'un électron en un point donné de l'espace est déterminée par la fonction  $\psi^2$  où  $\psi$  est la *fonction d'onde*.

#### L'équation d'onde de Schrödinger

On obtient des informations sur la fonction d'onde à partir de l'équation d'onde de Schrödinger, qui peut être établie et résolue exactement ou de façon approchée. L'équation de Schrödinger ne



#### TECHNIQUES EXPÉRIMENTALES

#### Encadré 1.2 Détermination de structure : diffraction des électrons

La diffraction des électrons par les molécules illustre le fait que les électrons se comportent à la fois comme des particules et comme des ondes. Des électrons qu'on a accélérés par une différence de potentiel de 50 kV ont une longueur d'onde de 5,5 pm et un faisceau d'électrons monochromatique (ayant une seule longueur d'onde) convient pour la diffraction par des molécules en phase gazeuse. L'appareil de diffraction des électrons (maintenu sous vide poussé) est disposé de façon à ce que le faisceau électronique interagisse avec un courant gazeux sortant d'une buse. Les champs électriques des noyaux de l'échantillon sont responsables de l'essentiel de la diffraction électronique observée.

Les études de diffraction électronique d'échantillons en phase gazeuse s'occupent de molécules qui sont constamment en mouvement, dans des orientations aléatoires et très distantes les unes des autres. Les données de diffraction fournissent donc principalement des informations sur les paramètres des liaisons intramoléculaires (contrairement aux résultats de la diffraction des rayons X, encadré 6.5). Les données initiales relient l'angle de dispersion du faisceau d'électrons à l'intensité. Après avoir fait les corrections pour la dispersion atomique, on obtient des données de dispersion moléculaire, et on peut, à partir de ces données (par une transformation de Fourier), obtenir les distances interatomiques de tous les couples d'atomes (liés et non liés) de la molécule gazeuse. La conversion de ces distances en une structure tridimensionnelle n'est pas simple, surtout pour les grosses molécules. Pour un exemple simple, considérons les données de diffraction électronique de BCl3 en phase gazeuse. Les résultats donnent pour les longueurs des liaisons B-Cl = 174 pm (toutes les liaisons de même longueur) et pour les distances entre les Cl non liés Cl-Cl = 301 pm (trois distances égales).

peut être *résolue exactement que* pour une espèce contenant un noyau et *un seul électron* (p.ex. <sup>1</sup>H, <sup>4</sup><sub>2</sub>He<sup>+</sup>), c'est-à-dire un système *hydrogénoïde*.

## Un ion ou un atome hydrogénoïde contient un noyau et un seul électron.

On peut représenter de plusieurs façons l'équation d'onde de Schrödinger et nous examinons dans l'**encadré 1.3** son application au mouvement d'une particule dans une boîte unidimensionnelle ; l'équation 1.12 donne la forme de l'équation d'onde de Schrödinger qui convient pour un déplacement dans la direction x.

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$$
(1.12)

où m = masse

E =énergie totale

V = énergie potentielle de la particule



On peut montrer par trigonométrie que chaque angle de liaison Cl–B–Cl,  $\theta$ , est égal à 120° et que BCl<sub>3</sub> est donc une molécule plane.

La diffraction des électrons ne se limite pas à l'étude des gaz. Les électrons de faible énergie (10-200 eV) sont diffractés par la surface d'un solide et la figure de diffraction obtenue ainsi donne des informations sur la disposition des atomes à la surface de l'échantillon solide. On appelle cette technique *diffraction des électrons de basse énergie* (LEED = low energy electron diffraction).

#### Pour en savoir plus

- E.A.V. Ebsworth, D.W.H. Rankin et S. Cradock (1991) *Structural Methods in Inorganic Chemistry*, 2<sup>e</sup> éd., CRC Press, Boca Raton, FL – Un chapitre sur les méthodes de diffraction comprend la diffraction des électrons par les gaz et les liquides.
- C. Hammond (2001) *The Basics of Crystallography and Diffraction*, 2<sup>e</sup> édition, Oxford University Press, Oxford. Le chapitre 11 traite de la diffraction des électrons et de ses applications.

En réalité, les électrons de déplacent évidemment dans un espace tridimensionnel et l'équation 1.13 donne une forme appropriée de l'équation d'onde de Schrödinger.

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$$
(1.13)

Nous ne occuperons pas de la résolution de cette équation, bien qu'il soit utile de noter qu'il est avantageux de travailler en coordonnées polaires sphériques (figure 1.4). Si nous examinons les résultats obtenus à partir de l'équation d'onde de Schrödinger, nous parlons de *la partie radiale et de la partie angulaire de la fonction d'onde*, et cela est représenté par l'équation 1.14 où R(r)et  $A(\theta, \phi)$  sont respectivement les fonctions d'onde radiale et angulaire.<sup>\*</sup>

$$\psi_{\text{cartésien}}(x, y, z) \equiv \psi_{\text{radial}}(r)\psi_{\text{angulaire}}(\theta, \varphi) = R(r)A(\theta, \varphi)$$
 (1.14)

<sup>&</sup>lt;sup>\*</sup> La composante radiale de l'équation 1.14 dépend des nombres quantiques *n* et *l*, alors que la composante angulaire dépend de *l* et de *m<sub>l</sub>*, et il faudrait écrire les composantes  $R_{n,l}(r)$  et  $A_{l,m_l}(\theta, \varphi)$ .

#### CONTEXTE CHIMIQUE ET THÉORIQUE

#### Encadré 1.3 La particule dans une boîte

L'étude qui suit illustre ce qu'on appelle *la particule dans une boîte unidimensionnelle* et illustre la quantification provenant de l'équation d'onde de Schrödinger.

L'équation d'onde de Schrödinger pour le mouvement d'une particule dans une boîte unidimensionnelle est donnée par :

0

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{8\pi^2m}{h^2} \big(E-V\big)\psi =$$

où *m* est la masse, *E* l'énergie totale et *V* l'énergie potentielle de la particule. L'obtention de cette équation est envisagée dans l'ensemble d'exercices à la fin de l'encadré 1.3. Pour un système donné où *V* et *m* sont connus, nous pouvons utiliser l'équation de Schrödinger pour obtenir les valeurs de *E* (les énergies permises de la particule) et de  $\psi$  (la fonction d'onde). La fonction d'onde elle-même n'a pas de signification physique, mais  $\psi^2$  est une probabilité (voir le texte principal) et pour que ce soit le cas,  $\psi$  doit avoir certaines propriétés :

- $\psi$  doit être finie pour toutes les valeurs de x ;
- $\psi$  ne peut avoir qu'une seule valeur pour chaque valeur de x ;
- $\psi$  et  $\frac{d\psi}{dx}$  doivent varier de façon continue lorsque x varie.

Considérons maintenant une particule qui subit un mouvement ondulatoire harmonique simple dans une seule dimension, c'est-à-dire que nous pouvons fixer l'axe *x* comme direction de la propagation de l'onde (le choix de *x* est arbitraire). Ajoutons comme contrainte au mouvement que la particule ne peut pas aller au-delà des parois verticales d'une boîte de largeur *a*. Comme aucune force ne s'exerce sur la particule à *l'intérieur* de la boîte, l'énergie potentielle *V* est nulle ; si nous prenons V = 0, nous imposons à *x* des limites telles que  $0 \le x \le a$ , ce qui signifie que la particule ne peut pas sortir de la boîte. La seule restriction que nous imposons à l'énergie totale *E* est d'être positive et de ne pouvoir être infinie. Il existe une restriction supplémentaire que nous nous contenterons d'indiquer : la condition aux limites pour la particule dans la boîte indique que  $\psi$  doit être nul pour x = 0 et x = a.

Récrivons alors l'équation de Schrödinger dans le cas particulier de la particule dans une boîte unidimensionnelle où V = 0:

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = -\frac{8\pi^2 mE}{h^2}\psi$$

qu'on peut écrire plus simplement :

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = -k^2\psi \quad \text{où} \quad k^2 = \frac{8\pi^2 mE}{h^2}$$

La solution à cette équation générale bien connue est :

 $\psi = A \sin kx + B \cos kx$ 

où *A* et *B* sont des constantes d'intégration. Si x = 0, sin kx = 0 et cos kx = 1; d'où  $\psi = B$  pour x = 0. Mais la condition aux limites cidessus indique que  $\psi = 0$  lorsque x = 0, et ceci n'est vrai que si B = 0. De même, d'après la condition aux limites, nous voyons que  $\psi = 0$  si x = a, et nous pouvons récrire l'équation ci-dessus sous la forme :

 $\psi = A \sin ka = 0$ 

Puisque la probabilité  $\psi^2$  que la particule se trouve entre x = 0 et x = a ne peut pas être nulle (la particule doit se trouver quelque part à l'intérieur de la boîte), *A* ne peut pas être nul et la dernière équation n'est valable que si :

$$ka = n\pi$$

où n = 1, 2, 3...; n ne peut pas être nul car cela rendrait nulle la probabilité  $\psi^2$ , ce qui signifierait que la particule n'est plus dans la boîte. En combinant les deux dernières équations, on obtient :

$$\psi = A \sin \frac{n\pi x}{a}$$

et d'après ce qu'on a vu précédemment :

$$E = \frac{k^2 h^2}{8\pi^2 m} = \frac{n^2 h^2}{8ma^2}$$

où n = 1, 2, 3...; n est le nombre quantique qui détermine l'énergie d'une particule de masse *m* confinée dans une boîte unidimensionnelle de largeur *a*. Ainsi, les limites imposées à la valeur de  $\psi$  ont conduit à des niveaux d'énergie quantifiés dont l'espacement est déterminé par *m* et *a*.

Le mouvement résultant de la particule est décrit par une série d'ondes stationnaires sinusoïdales dont trois sont représentées cidessous. La fonction d'onde  $\psi_2$  pour longueur d'onde *a* alors que les longueurs d'onde de  $\psi_1$  et  $\psi_3$  sont respectivement  $\frac{a}{2}$  et  $\frac{3a}{2}$ . Chacune des ondes du schéma a une amplitude nulle à l'origine (au point a = 0); les points pour lesquels  $\psi = 0$  sont appelés *nœuds*. Pour une particule donnée de masse *m*, les distances entre les niveaux d'énergie varient avec  $n^2$ , ce qui signifie que les espacements ne sont pas égaux.





#### **Exercices autodidactiques**

Considérez une particule qui subit un mouvement ondulatoire harmonique simple dans une seule dimension, la propagation de l'onde se faisant selon l'axe x. L'équation générale de l'onde est :

$$\psi = A \sin \frac{2\pi x}{\lambda}$$

où A est l'amplitude de l'onde.

1. Si 
$$\psi = A \sin \frac{2\pi x}{\lambda}$$
, trouvez  $\frac{d\psi}{dx}$  et montrez alors que  
 $\frac{d^2\psi}{dx^2} = -\frac{4\pi^2}{\lambda^2}\psi$ 

- Si la particule dans la boîte a pour masse m et se déplace avec une vélocité ν, quelle est l'énergie cinétique EC ? À l'aide de l'équation de de Broglie (1.11), écrivez l'expression de EC en fonction de m, h et λ.
- 3. L'équation que vous avez établie dans la partie (2) ne s'applique qu'à une particule qui se déplace dans un espace où l'énergie potentielle V est constante et où on peut considérer que la particule ne possède que de l'énergie cinétique EC. Si l'énergie potentielle de la particule varie, l'énergie totale est E = EC + V. En utilisant cette information et vos réponses aux parties (1) et (2), établissez l'équation de Schrödinger (donnée p. 8) pour une particule dans une boîte unidimensionnelle.

Après avoir résolu l'équation d'onde, quels sont les résultats ?

- La fonction d'onde ψ est une solution de l'équation de Schrödinger et décrit le comportement d'un électron dans une région de l'espace appelée *orbitale atomique*.
- Nous pouvons trouver les valeurs de l'énergie associées à des fonctions d'onde particulières ;
- La quantification des niveaux d'énergie découle tout naturellement de l'équation de Schrödinger (encadré 1.3).

Une fonction d'onde  $\psi$  est une fonction mathématique qui contient des informations détaillées sur le comportement d'un électron. Une fonction d'onde atomique  $\psi$  est constituée d'une composante radiale R(r) et d'une composante angulaire  $A(\theta, \phi)$ . On appelle orbitale atomique la région de l'espace définie par la fonction d'onde.

#### **1.6** Orbitales atomiques

#### Les nombres quantiques n, l et $m_l$

On décrit habituellement une orbitale par trois *nombres quantiques* entiers. Nous avons déjà rencontré le *nombre quantique principal*, *n*, dans le modèle de Bohr de l'atome d'hydrogène. Le nombre quantique principal est un entier positif dont les valeurs sont définies par  $1 \le n \le \infty$ ; on obtient les valeurs permises en résolvant la partie radiale de la fonction d'onde.

Deux autres nombres quantiques, l et  $m_l$ , apparaissent lorsqu'on résout la partie angulaire de la fonction d'onde. Le nombre quantique l est appelé *nombre quantique azimutal* et ses valeurs permises sont 0, 1, 2...(n - 1). La valeur de l détermine la forme de l'orbitale



**Fig. 1.4** Définition des coordonnées polaires  $(r, \theta, \varphi)$  d'un point, représenté ici en rose ; *r* est la coordonnée radiale et  $\theta$  et  $\varphi$  sont les coordonnées angulaires.  $\theta$  et  $\varphi$  sont mesurés en radians (rad). Les axes cartésiens (x, y et z) sont également représentés.

atomique et le *moment angulaire orbital* de l'électron. La valeur du nombre quantique magnétique,  $m_l$ , donne des informations sur l'orientation de l'orbitale dans l'espace et prend les valeurs entières de -l a + l.

Chaque orbitale atomique est entièrement définie par un ensemble de trois nombres quantiques, n, l et  $m_l$ .

## Exemple résolu 1.2 Nombres quantiques : orbitales atomiques

Sachant que le nombre quantique principal n est 2, écrivez les valeurs permises de l et de  $m_l$  et déterminez le nombre d'orbitales atomiques pour n = 3.

Pour une valeur donnée de *n* les valeurs permises de *l* sont 0, 1, 2...(n - 1), et celles de  $m_l$  sont -l...0...+l.

Pour n = 2, les valeurs permises de l sont 0 et 1.

Pour l = 0, la valeur permise est  $m_l = 0$ .

Pour l = 1, les valeurs permises sont  $m_l = -1, 0, +1$ .

Chaque ensemble de trois nombres quantiques définit une orbitale atomique précise et par conséquent, pour n = 2, il y a quatre orbitales atomiques définies par les ensembles de nombres quantiques :

| n = 2, | l = 0, | $m_l = 0$  |
|--------|--------|------------|
| n = 2, | l = 1, | $m_l = -1$ |
| n = 2, | l = 1, | $m_l = 0$  |
| n = 2, | l = 1, | $m_l = +1$ |

#### **Exercices autodidactiques**

- 1. Si les valeurs de m<sub>l</sub> sont 1, 0, + 1, écrivez la valeur correspondante de *l*. [*Rép. l* = 1]
- 2. Si les valeurs de *l* sont 0, 1, 2 et 3, quelle est la valeur correspondante de *n* ? [*Rép. n* = 4]
- 3. Pour n = 1, quelles sont les valeurs permises de l et de  $m_l$ ? [*Rép.* l = 0;  $m_l = 0$ ]
- 4. Complétez ces ensembles de nombres quantiques : (a) n = 4, l = 0, m<sub>l</sub> = ... ; (b) n = 3, l = 1, m<sub>l</sub> = ...

 $[R\acute{e}p. (a) 0; (b) - 1, 0, +1]$ 

Les différences entre les *types* d'orbitales atomiques proviennent de leurs *formes* et de leurs *symétries*. Les quatre types d'orbitales atomiques les plus courants sont les orbitales *s*, *p*, *d* et *f*, et les valeurs correspondantes de *l* sont respectivement 0, 1, 2 et 3. Chaque orbitale atomique est notée par les valeurs de *n* et de *l*, et nous parlons alors d'orbitales 1*s*, 2*s*, 2*p*, 3*s*, 3*p*, 3*d*, 4*s*, 4*p*, 4*d*, 4*f*, etc.

Pour une orbitale s, l = 0. Pour une orbitale p, l = 1. Pour une orbitale d, l = 2. Pour une orbitale f, l = 3.

#### Exemple résolu 1.3 Nombres quantiques : les types d'orbitales

En utilisant les règles qui régissent les valeurs des nombres quantiques n et l, écrivez les types possibles d'orbitales atomiques pour n = 1, 2 et 3.

Les valeurs permises de l sont les nombres entiers entre 0 et (n-1).

Pour n = 1, l = 0.

La seule orbitale atomique pour n = 1 est l'orbitale 1s.

Pour n = 2, l = 0 ou 1.

Les orbitales atomiques permises pour n = 2 sont les orbitales 2s et 2p.

Pour n = 3, l = 0, 1 ou 2.

Les orbitales permises pour n = 3 sont les orbitales 3s, 3p et 3d.

#### **Exercices autodidactiques**

- 1. Écrivez les types possibles d'orbitales atomiques pour *n* = 4. [*Rép.* 4s, 4p, 4d, 4f]
- 2. Quelle est l'orbitale atomique pour laquelle n = 4 et l = 2? [*Rép.* 4*d*]
- 3. Donnez les trois nombres quantiques qui décrivent une orbitale atomique 2s. [*Rép. n* = 2, *l* = 0, *m<sub>l</sub>* = 0]
- 4. Quel nombre quantique différencie les orbitales atomiques 3s et 5s ? [*Rép. n*]

#### Les orbitales dégénérées possèdent la même énergie.

Considérons maintenant la conséquence du nombre quantique  $m_l$  sur ces types d'orbitales. Pour une orbitale s, l = 0 et  $m_l$  ne peut être égal qu'à 0. Cela signifie que pour toute valeur de n, il n'y a qu'une seule orbitale s; on dit qu'elle est simplement dégénérée. Pour une orbitale p, l = 1 et  $m_l$  peut prendre trois valeurs : -1, 0, +1. Cela signifie qu'il y a trois orbitales p pour une valeur donnée de n lorsque  $n \ge 2$ ; l'ensemble des orbitales p est dit triplement dégénéré, ou trois fois dégénéré. Pour une orbitale d, l = 2 et il y a cinq valeurs possibles de  $m_l$  : -2, -1, 0, +1, +2, ce qui signifie que pour une valeur donnée de n ( $n \ge 3$ ) il existe cinq orbitales d; on dit que l'ensemble est cinq fois dégénéré. Comme exercice, vous devriez montrer qu'il y a sept orbitales f formant un ensemble dégénéré pour une valeur donnée de n ( $n \ge 4$ ).

```
Pour une valeur donnée de n \ (n \ge 1), il y a une seule orbitale
atomique s.
Pour une valeur donnée de n \ (n \ge 2), il y a trois orbitales
atomiques p.
Pour une valeur donnée de n \ (n \ge 3), il y a cinq orbitales
atomiques d.
Pour une valeur donnée de n \ (n \ge 4), il y a sept orbitales
atomiques f.
```

| Orbitale atomique | n | l | $m_l$ | Partie radiale de la fonction d'onde, $R(r)^*$ | Partie angulaire de la fonction d'onde, $A(\theta, \varphi)$ |
|-------------------|---|---|-------|------------------------------------------------|--------------------------------------------------------------|
| 1.5               | 1 | 0 | 0     | $2e^{-r}$                                      | <u> </u>                                                     |
|                   |   | Ĩ |       | $\frac{1}{1}$ (2) $-r/2$                       | $2\sqrt{\pi}$                                                |
| 2s                | 2 | 0 | 0     | $\frac{1}{2\sqrt{2}}(2-r)e^{-r/2}$             | $\overline{2\sqrt{\pi}}$                                     |
| $2p_x$            | 2 | 1 | + 1   | $\frac{1}{2\sqrt{6}}re^{-r/2}$                 | $\frac{\sqrt{3}(\sin\theta\cos\phi)}{2\sqrt{\pi}}$           |
| $2p_y$            | 2 | 1 | 0     | $\frac{1}{2\sqrt{6}}re^{-r/2}$                 | $\frac{\sqrt{3}(\cos\theta)}{2\sqrt{\pi}}$                   |
| $2p_z$            | 2 | 1 | - 1   | $\frac{1}{2\sqrt{6}}re^{-r/2}$                 | $\frac{\sqrt{3}(\sin\theta\cos\varphi)}{2\sqrt{\pi}}$        |
|                   |   |   |       | 3                                              |                                                              |

**Tableau 1.2** Les solutions de l'équation de Schrödinger pour l'atome d'hydrogène qui définissent les orbitales atomiques 1*s*, 2*s* et 2*p*. Pour ces formes de solutions, la distance *r* par rapport au noyau est mesurée en unités atomiques.

\* Pour l'orbitale atomique 1*s*, la formule de R(r) est en fait  $2\left(\frac{Z}{a_0}\right)^{\frac{1}{2}}e^{-Zr/a_0}$ , mais pour l'atome d'hydrogène, Z = 1 et  $a_0 = 1$  unité atomique. Les autres fonctions sont simplifiées de la même façon.

#### La partie radiale de la fonction d'onde, R(r)

Les formes mathématiques de certaines fonctions d'onde de l'atome H sont données dans le tableau 1.2. La figure 1.5 montre des graphes de la partie radiale de la fonction d'onde, R(r), en fonction de la distance r du noyau pour les orbitales atomiques 1s et 2s de l'atome d'hydrogène, et la figure 1.6 représente les graphes de R(r) en fonction de r pour les orbitales atomiques 2p, 3p, 4p et 3d; le noyau est à r = 0.

Dans le tableau 1.2, nous voyons que les parties radiales des fonctions d'onde diminuent exponentiellement lorsque r augmente, mais que cette diminution est plus lente pour n = 2 que pour n = 1. Cela signifie que la probabilité de trouver l'électron loin du noyau augmente lorsque n augmente. Ce schéma est valable pour les valeurs plus élevées de n. On peut voir clairement cette diminution

exponentielle sur la figure 1.5a. On peut noter plusieurs points à partir des graphes des fonctions d'onde radiales des figures 1.5 et 1.6 :

- les orbitales atomiques s ont une valeur finie de R(r) sur le noyau;
- pour toutes les orbitales autres que s, R(r) = 0 sur le noyau ;
- pour l'orbitale 1*s*, *R*(*r*) est toujours positive; pour la première orbitale des autres types (2*p*, 3*d*, 4*f*), *R*(*r*) est positive partout, sauf à l'origine ;
- pour le deuxième orbitale d'un type donné (2s, 3p, 4d, 5f), R(r) peut être positive ou négative, mais la fonction d'onde ne présente qu'un seul changement de signe ; le point pour lequel R(r) = 0 (origine non comprise) est appelé nœud radial ;
- pour la troisième orbitale d'un type donné (3s, 4p, 5d, 6f), R(r) présente deux changements de signe : elle possède deux nœuds radiaux.



**Fig. 1.5** Graphes de la partie radiale de la fonction d'onde, R(r), en fonction de la distance r du noyau pour (a) l'orbitale atomique 1s et (b) l'orbitale atomique 2s de l'atome d'hydrogène ; le noyau est à r = 0. Les échelles verticales sont différentes pour les deux graphes, mais les échelles horizontales sont les mêmes.



Fig. 1.6 Graphes des parties radiales de la fonction d'onde R(r) en fonction de r des orbitales atomiques 2p, 3p, 4p et 3d; le noyau est à r = 0.

| Les | orbitales | <i>ns</i> ont $(n-1)$ nœuds radiaux. |
|-----|-----------|--------------------------------------|
| Les | orbitales | np ont $(n-2)$ nœuds radiaux.        |
| Les | orbitales | nd ont $(n-3)$ nœuds radiaux.        |
| Les | orbitales | nf ont $(n-4)$ nœuds radiaux.        |

#### La fonction de distribution radiale, $4\pi r^2 R(r)^2$

Voyons maintenant comment nous pourrions représenter les orbitales atomiques dans l'espace tridimensionnel. Nous avons dit précédemment que description habituelle d'un électron dans un atome est la *probabilité de présence de l'électron* dans un volume d'espace donné. La fonction  $\psi^2$  (encadré 1.4) est proportionnelle à la *densité de probabilité* de l'électron en un point de l'espace. En examinant les valeurs de  $\psi^2$  sur des points autour du noyau, nous pouvons définir une *surface limite* qui renferme le volume dans lequel l'électron va passer, disons, 95 % de son temps. Cela nous donne en fait une représentation physique de l'orbitale atomique, puisqu'on peut décrire  $\psi^2$ en fonction des composantes radiales et angulaires,  $R(r)^2$  et  $A(\theta, \varphi)^2$ . Considérons d'abord les composantes radiales. Il est utile de représenter la densité de probabilité en construisant un graphe d'une *fonction de répartition radiale* (équation 1.15), ce qui nous permet de prévoir la région de l'espace dans laquelle on peut trouver l'électron.

Fonction de répartition radiale = 
$$4\pi r^2 R(r)^2$$
 (1.15)

Les fonctions de répartition radiale des orbitales 1*s*, 2*s* et 3*s* de l'hydrogène sont représentées par la figure 1.7, et la figure 1.8 montre celles des orbitales 3*s*, 3*p* et 3*d*. Chaque fonction est nulle sur le noyau, à cause du terme  $r^2$  et du fait que r = 0 sur le noyau. Puisque la fonction dépend de  $R(r)^2$ , elle est toujours positive, contrairement à R(r) dont les graphes sont représentés par les figures 1.5 et 1.6. Chaque graphe de  $4\pi r^2 R(r)^2$  présente au moins un maximum de la fonction, qui correspond à une distance du noyau où la probabilité de présence de l'électron est la plus élevée. Les points pour lesquels  $4\pi r^2 R(r)^2 = 0$  (en ignorant r = 0) correspondent à des nœuds radiaux où R(r) = 0.



#### CONTEXTE CHIMIQUE ET THÉORIQUE

#### Encadré 1.4 Notation et normalisation de $\psi^2$

Bien que nous utilisions  $\psi^2$  dans le texte, on devrait écrire plus exactement  $\psi\psi^*$  où  $\psi^*$  est le conjugué complexe de  $\psi$ . Dans la direction *x*, la probabilité de présence de l'électron entre les limites *x* et (x + dx) est proportionnelle à  $\psi(x)\psi^*(x) dx$ . Dans l'espace tridimensionnel, cela s'exprime par  $\psi\psi^* d\tau$  où nous considérons la probabilité de présence de l'électron dans un élément de volume  $d\tau$ . Pour la partie radiale de la fonction d'onde, la fonction est  $R(r)R^*(r)$ .

Au cours de toutes nos manipulations mathématiques, nous devons nous assurer que l'électron est *quelque part* (qu'il n'a pas disparu !) et il faut pour cela *normaliser* à l'unité la fonction d'onde.

Cela signifie que la probabilité de présence de l'électron quelque part dans l'espace est prise égale à 1. Mathématiquement, la normalisation est représenté ainsi :

$$\psi^2 d\tau = 1$$
 ou plus correctement  $\int \psi \psi^* d\tau = 1$ 

ce qui exprime effectivement que l'intégrale ( $\int$ ) est prise sur tout l'espace (d $\tau$ ) et que l'intégrale totale de  $\psi^2$  (ou de  $\psi\psi^*$ ) doit être l'unité.



Fig. 1.7 Fonctions de distribution radiales,  $4\pi r^2 R(r)^2$ , des orbitales atomiques 1s, 2s et 3s de l'atome d'hydrogène.



**Fig. 1.8** Fonctions de distribution radiale,  $4\pi r^2 R(r)^2$ , des orbitales atomiques 3s, 3p, et 3d de l'atome d'hydrogène.

#### La partie angulaire de la fonction d'onde, $A(\theta, \varphi)$

Considérons maintenant les parties angulaires des fonctions d'onde,  $A(\theta, \varphi)$ , pour les différents types d'orbitales atomiques. Elles sont indépendantes du nombre quantique principal comme le montre le tableau 1.2 pour n = 1 et 2. En outre, pour les orbitales s,  $A(\theta, \varphi)$  est indépendante des angles  $\theta$  et  $\varphi$  et a une valeur constante. Ainsi, une orbitale s a une symétrie sphérique autour du noyau. Nous avons noté précédemment qu'un ensemble d'orbitales p est triplement dégénéré ; par convention, on désigne les trois orbitales qui constituent l'ensemble dégénéré par  $p_x$ ,  $p_y$  et  $p_z$ . Sur le tableau 1.2, nous voyons que la partie angulaire de la fonction d'onde  $p_z$  est indépendante de  $\varphi$ ; on peut représenter l'orbitale par deux sphères (tangentes à l'origine)<sup>\*</sup> dont les centres se trouvent sur l'axe z. Pour les orbitales  $p_x$  et  $p_y$ ,  $A(\theta, \varphi)$  dépend à la fois de  $\theta$ et de  $\varphi$ ; ces orbitales sont semblables à  $p_z$ , mais elles sont orientées selon les axes x et y.

Même si nous ne devons pas oublier que l'origine des fonctions d'onde est mathématique, la plupart des chimistes les trouvent difficiles à visualiser et préfèrent des représentations graphiques des orbitales. La figure 1.9 présente les surfaces limites de l'orbitale s et des trois orbitales p. Les différentes couleurs des *lobes* 

<sup>\*</sup> Pour insister sur le fait que  $\varphi$  est une fonction continue, nous avons étendu jusqu'au noyau les surfaces limites dans les représentations des orbitales, mais ce n'est pas absolument exact pour les orbitales *p* si nous prenons en compte  $\approx$  95 % de la charge électronique.

Chapitre

## Chimie des métaux du bloc d : les métaux de la première rangée

#### **SUJETS ABORDÉS**

- État naturel, extraction et utilisations
- Propriétés physiques

| 1–2    | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13–18    |
|--------|----|----|----|----|----|----|----|----|----|----|----------|
|        |    |    |    |    |    |    |    |    |    |    |          |
| Bloc s |    |    |    |    |    |    |    |    |    |    | Bloc $p$ |
|        | Sc | Ti | V  | Cr | Mn | Fe | Со | Ni | Cu | Zn |          |
|        | Y  | Zr | Nb | Mo | Тс | Ru | Rh | Pd | Ag | Cd |          |
|        | La | Hf | Та | W  | Re | Os | Ir | Pt | Au | Hg |          |

#### 22.1 Introduction

Il vaut mieux examiner la chimie des métaux de la première rangée du bloc d séparément de celle des métaux de la deuxième et de la troisième rangée pour plusieurs raisons, dont celles-ci :

- la chimie du premier membre d'une triade est distincte de celle des deux métaux plus lourds, p. ex. Zr et Hf ont des chimies similaires, mais celle de Ti est différente;
- les spectres électroniques et les propriétés magnétiques de nombreux complexes des métaux de la première rangée peuvent souvent être expliqués à l'aide de la théorie du champ cristallin ou du champ des ligands, mais les effets du couplage spin-orbite sont plus importants pour les métaux plus lourds (paragraphes 21.8 et 21.9);
- les complexes des ions des métaux lourds présentent une plus large gamme de coordinences que ceux de leurs congénères de la première rangée ;
- l'évolution des états d'oxydation (tableau 20.3) n'est pas régulière pour tous les membres d'une triade, p. ex. bien que l'état d'oxydation maximum de Cr, Mo et W soit +6, sa stabilité est plus grande pour Mo et W que pour Cr ;
- la liaison métal-métal est plus importante pour les métaux lourds que pour ceux de la première rangée.

Ce chapitre met l'accent sur la chimie inorganique et la chimie de coordination ; les complexes organométalliques sont étudiés au **chapitre 24**.

- Série spectrochimique
- Chimie inorganique

## 22.2 État naturel, extraction et utilisations

La figure 22.1 montre les abondances relatives des métaux de la première rangée du bloc *d* dans la croûte terrestre. Le *scandium* apparaît comme un constituant rare de toute une gamme de minéraux. Sa source principale est la thortveitite (Sc, Y)<sub>2</sub>Si<sub>2</sub>O<sub>3</sub> (un minéral rare découvert en Scandinavie et au Japon), et on peut aussi l'extraire des résidus du traitement de l'uranium. Les usages du scandium sont limités ; c'est un composant des lampes à forte intensité.

Le minerai principal du *titane* est l'ilménite (FeTiO<sub>3</sub>), et on le trouve aussi dans trois formes de TiO2 (l'anatase, le rutile et la brookite) et dans la pérovskite (CaTiO<sub>3</sub>, figure 6.23). Les structures de l'anatase, du rutile et de la brookite sont différentes : alors que la structure du rutile (figure 6.21) est basée sur un arrangement hc d'ions O<sup>2-</sup> dont la moitié des trous octaédriques est occupée par des centres Ti(IV), celles de l'anatase et de la brookite contiennent un arrangement cfc d'ions O<sup>2-</sup>. Le titane est présent dans les météorites et les échantillons de roches de la mission lunaire Apollo 17 contiennent  $\approx$  12 % de Ti. La production de Ti implique la conversion du rutile ou de l'ilménite en TiCl<sub>4</sub> (par chauffage dans un courant de Cl<sub>2</sub> à 1 200 K en présence de coke) suivie d'une réduction par Mg. On purifie aussi l'oxyde de titane(IV) en passant par TiCl<sub>4</sub> dans le « procédé au chlorure » (encadré 22.3). Le titane métallique résiste à la corrosion à température ambiante, et il est léger et résistant, ce qui en fait un composant intéressant des alliages, p. ex. pour la construction des avions. Les aimants supraconducteurs (utilisés par exemple dans les appareils d'IRM, encadré 3.6) contiennent des conducteurs multi-noyaux NbTi.

Le *vanadium* se trouve dans plusieurs minéraux dont la *vanadinite* ( $Pb_5(VO_4)_3Cl$ ), la *carnotite* ( $K_2(UO_2)_2(VO_4)_2 \cdot 3H_2O$ , la *roscoelite* (un mica contenant du vanadium) et la *patronite*, un polysulfure ( $VS_4$ ). On le trouve aussi dans la phosphorite (**paragraphe 15.2**) et dans certains pétroles bruts. Il n'est pas extrait directement, et l'extraction du vanadium est associée à celle d'autres métaux. Le grillage des minerais avec Na<sub>2</sub>CO<sub>3</sub> donne NaVO<sub>3</sub> soluble dans l'eau, et on peut précipiter de ces solutions le sel peu soluble [NH<sub>4</sub>] [VO<sub>3</sub>]. Ce dernier est chauffé pour donner V<sub>2</sub>O<sub>5</sub> dont la réduction



**Fig. 22.1** Abondances relatives des métaux de la première rangée du bloc *d* dans la croûte terrestre. Les données sont mesurées sur une échelle logarithmique. Les unités d'abondance sont des parties par million (ppm).

par Ca donne V. La sidérurgie consomme environ 85 % de la production mondiale de V et le ferrovanadium (utilisé pour renforcer les aciers) est fabriqué en réduisant un mélange de  $V_2O_3$  et de Fe<sub>2</sub>O<sub>3</sub> par Al ; on utilise les alliages acier-vanadium pour les ressorts et pour les outils de coupe à grande vitesse. On utilise l'oxyde de vanadium(V) comme catalyseur pour l'oxydation de SO<sub>2</sub> en SO<sub>3</sub> (paragraphe 27.7) et celle du naphtalène en acide phtalique.

Le minerai principal du *chrome* est la *chromite* (FeCrO<sub>4</sub>) qui a une structure de spinelle normal (encadré 13.6 et paragraphe 21.10). La réduction de la chromite par le carbone donne le *ferrochrome* pour la sidérurgie ; les aciers inoxydables contiennent Cr pour accroître leur résistance à la corrosion (encadré 6.2). Pour produire Cr métallique, on fond la chromite avec Na<sub>2</sub>CO<sub>3</sub> en présence d'air (équation 22.1) pour donner Na<sub>2</sub>CrO<sub>4</sub> soluble dans l'eau et  $Fe_2O_3$  insoluble. L'extraction par l'eau suivie d'une acidification par  $H_2SO_4$  donne une solution d'où on peut faire cristalliser Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>. Les équations 22.2 et 22.3 montrent les étapes finales de la production.

$$4\text{FeCr}_{2}\text{O}_{4} + 8\text{Na}_{2}\text{CO}_{3} + 7\text{O}_{2}$$
  

$$\rightarrow 8\text{Na}_{2}\text{CrO}_{4} + 2\text{Fe}_{2}\text{O}_{3} + 8\text{CO}_{2} \qquad (22.1)$$

$$Na_2Cr_2O_7 + 2C \xrightarrow{\Delta} Cr_2O_3 + Na_2CO_3 + CO$$
(22.2)

$$\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \xrightarrow{\Delta} \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$$
 (22.3)

À cause de sa résistance à la corrosion, Cr est largement utilisé comme couche protectrice (*chromage*) ; on dépose le métal en électrolysant  $Cr_2(SO_4)_3$  aqueux, obtenu par dissolution de  $Cr_2O_3$  dans  $H_2SO_4$ . Après la sidérurgie, le consommateur le plus important de Cr ( $\approx 25$  %) est l'industrie chimique ; les applications comprennent des pigments (p. ex. le jaune de chrome), des agents de tannage, des mordants, des catalyseurs et des oxydants. La chromite est utilisée comme matériau réfractaire (paragraphe 12.6), p. ex. pour les briques réfractaires et les revêtements intérieurs des fours. Les composés du chrome sont toxiques, les chromates sont corrosifs pour la peau.

Plusieurs oxydes de *manganèse* existent à l'état naturel, le plus important étant la pyrolusite ( $\beta$ -MnO<sub>2</sub>). L'Afrique du Sud et l'Ukraine contiennent respectivement 80 % et 10 % des réserves mondiales du minerai. On fait actuellement peu de recyclage du manganèse. Des nodules de manganèse contenant jusqu'à 24 % du métal ont été découverts sur le fond de l'océan. C'est la sidérurgie qui utilise le plus le métal. On mélange la pyrolusite avec Fe<sub>2</sub>O<sub>3</sub> et le mélange est réduit par le coke pour donner le *ferromanganèse* ( $\approx$  80 % de Mn). Presque tous les aciers contiennent un peu de Mn ; ceux qui ont une teneur élevée en Mn (jusqu'à 12 %) possèdent

#### **RESSOURCES ET ENVIRONNEMENT**

#### Encadré 22.1 Chrome : ressources et recyclage

Environ 95 % des réserves mondiales de minerai de chrome se trouvent en Afrique du Sud et au Kazakhstan. Le diagramme de barres illustre la prédominance de l'Afrique du Sud pour la production mondiale de chromite.

Les nations industrielles d'Europe et d'Amérique du Nord dépendent de l'étranger pour la fourniture du minerai de chrome, les USA consommant  $\approx 14$  % de la production mondiale. Parce que le chrome est un métal essentiel pour l'économie, les réserves gouvernementales constituent une stratégie importante pour assurer les approvisionnements pendants les périodes d'activité militaire. Le minerai de chrome est transformé en ferro-alliages de chrome (pour l'acier inoxydable et pour d'autres alliages), en matériaux réfractaires contenant de la chromite et en produits chimiques contenant du chrome. Les utilisations commerciales de ces derniers sont les pigments, le tannage du cuir et la conservation du bois.

Le recyclage des déchets d'acier inoxydable comme source de Cr est une source secondaire importante. En 2004, l'approvisionnement des USA en chrome était constitué de 53 % des réserves gouvernementales et industrielles, de 31 % d'importations et de 16 % de matériau recyclé.



[Données : US Geological Survey.]



Fig. 22.2 Représentation schématique de la pile sèche (version « acide »).

une très haute résistance aux chocs et à l'usure et conviennent aux machines à broyer, à meuler et à creuser. Le manganèse métallique est produit par électrolyse de solutions de  $MnSO_4$ . On utilise l'oxyde de manganèse(V) dans les piles. La figure 22.2 montre la pile Leclanché (la pile « acide ») ; dans la version « alcaline » à longue durée de vie,  $NH_4Cl$  est remplacé par NaOH ou KOH. Le fort pouvoir oxydant de  $KMnO_4$  en fait un produit chimique important (encadré 22.5). Le manganèse est un oligo-élément essentiel pour les plantes, et on ajoute de petites quantités de  $MnSO_4$  aux engrais.

Le fer est le plus important de tous les métaux et il est le quatrième par ordre d'abondance dans la croûte terrestre. On pense que le noyau de la terre est constitué principalement de fer, qui est par ailleurs le constituant principal des météorites métalliques. Les minerais principaux sont l'hématite ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>), la magnétite (Fe<sub>3</sub>O<sub>4</sub>), la sidérite (FeCO<sub>3</sub>), la goethite ( $\alpha$ -Fe(O)OH) et la lépidocrocite ( $\gamma$ -Fe(O)OH). Alors que les pyrites de fer (FeS<sub>2</sub>) et la chalcopyrite (CuFeS<sub>2</sub>) sont courantes, leurs teneurs élevées en soufre les rendent impropres à la production de Fe. Fe pur (préparé par réduction des oxydes avec H<sub>2</sub>) est réactif et se corrode rapidement ; le fer finement divisé est pyrophorique. Bien que le fer pur n'ait pas d'importance commerciale, la production de l'acier se fait à une échelle gigantesque (paragraphe 6.7, encadrés 6.1, 6.2 et 8.4). On utilise l'oxyde de fer(III)  $\alpha$ comme agent de polissage et de meulage et pour la formation de ferrites (paragraphe 22.9). Les oxydes de fer sont d'importants pigments commerciaux : α-Fe<sub>2</sub>O<sub>3</sub> (rouge), γ-Fe<sub>2</sub>O<sub>3</sub> (brun-rouge), Fe<sub>3</sub>O<sub>4</sub> (noir) et Fe(O)OH (jaune). Le fer a une immense importance biologique (chapitre 29), et est présent, par exemple, dans l'hémoglobine et dans la myoglobine (des transporteurs de O<sub>2</sub>), les ferrédoxines et les cytochromes (processus rédox), la ferritine (stockage du fer), les phosphatases acides (hydrolyse des phosphates), les superoxyde dismutases (dismutation de O<sub>2</sub>) et la nitrogénase (fixation de l'azote). Une carence en fer dans l'organisme provoque l'anémie (encadré 22.8), et un excès provoque l'hémochromatose.

Le *cobalt* se trouve sous forme d'un certain nombre de sulfures et d'arséniures minéraux dont la cobaltite (CoAsS) et la skutterudite ((Co,Ni)As<sub>3</sub> qui contient des unités As<sub>4</sub> planes). La production du métal dépend du fait qu'on le trouve souvent dans les minerais d'autres métaux (p. ex. Ni, Cu et Ag) et les processus finaux comportent la réduction de Co<sub>3</sub>O<sub>4</sub> par Al ou C suivie d'un raffinage par électrolyse. Co pur est cassant, mais il est industriellement important dans les aciers spéciaux, en alliage avec Al, Fe et Ni (l'*Alnico* est un groupe d'alliages sans carbone) dans les aimants permanents et sous la forme d'alliages non-ferreux durs, solides et résistant à la corrosion (p. ex. avec Cr et W) qui sont importants dans la fabrication des moteurs à réaction et dans les composants aérospatiaux. Les composés du cobalt sont largement utilisés comme pigments (les teintes bleues de la porcelaine, des émaux et des verres (encadré 22.10), comme catalyseurs et comme additifs des aliments pour les animaux. La vitamine B12 est un complexe du cobalt, et une série d'enzymes nécessitent des coenzymes B<sub>12</sub>. L'isotope artificiel <sup>60</sup>Co est utilisé comme marqueur (encadré 3.3). Comme le cobalt, le *nickel* se trouve sous forme de sulfures et d'arséniures minéraux, p. ex. la *pentlandite*, (Ni,Fe)<sub>9</sub>S<sub>8</sub>. Le grillage de ces minerais dans l'air donne l'oxyde de nickel qui est ensuite réduit en métal par le carbone. Le métal est raffiné par électrolyse ou par transformation en Ni(CO)<sub>4</sub> suivie d'une décomposition thermique (équation 22.4). C'est le procédé Mond, qui est fondé sur le fait que Ni forme un dérivé carbonyle plus facilement que tout autre métal.

$$Ni + 4CO \xrightarrow[423-573]{323 \text{ K}} Ni(CO)_4 \qquad (22.4)$$

On utilise abondamment le nickel dans les alliages, notamment dans l'acier inoxydable, dans d'autres alliages résistant à la corrosion comme le monel (68 % de Ni et 32 % de Cu), et dans les métaux monétaires. La galvanoplastie du Ni forme une couche protectrice sur d'autres métaux. Le nickel est largement utilisé dans les piles ; récemment, on a mis au point des accumulateurs nickel-hydrure métallique « propres » (encadré 10.5) qui surpassent en performance les accumulateurs Ni-Cd (équation 22.5) comme sources rechargeables d'énergie pour les appareils portables.

$$\begin{array}{l}
\dot{A} \ l'anode : Cd + 2[OH]^{-} \rightarrow Cd(OH)_{2} + 2e^{-} \\
\dot{A} \ la \ cathode : NiO(OH) + H_{2}O + e^{-} \rightarrow Ni(OH)_{2} + [OH]^{-} \\
\end{array}$$

$$(22.5)$$

Le nickel est un catalyseur important, p. ex. pour l'hydrogénation des composés organiques insaturés et pour la réaction de déplacement du gaz à l'eau (paragraphe 10.4). Le *nickel Raney* est préparé en traitant un alliage NiAl par NaOH, et c'est un matériau spongieux (pyrophorique quand il est sec) qui est un catalyseur très actif. Le recyclage du nickel devient de plus en plus important et sa source majeure est l'acier inoxydable austénitique (encadré 6.2). Aux USA, environ 40 % du nickel est recyclé.

Le *cuivre* est, de très loin, le moins réactif des métaux de la première rangée ; il se trouve à l'état natif dans de petits dépôts dans divers pays. Le minerai principal est la *chalcopyrite* (CuFeS<sub>2</sub>) ; les autres minerais sont la *chalcanthite* (CuSO<sub>4</sub>·5H<sub>2</sub>O), l'*atacamite* (Cu<sub>2</sub>Cl(OH)<sub>3</sub>), la *cuprite* (Cu<sub>2</sub>O) et la *malachite* (Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>). La malachite polie est très utilisée dans la décoration. La production traditionnelle de Cu comporte le grillage de la chalcopyrite avec un apport d'air limité pour donner Cu<sub>2</sub>S et FeO ; ce dernier est éliminé en le combinant avec la silice, ce qui donne un laitier, et Cu<sub>2</sub>S est transformé en Cu par la réaction 22.26. Toutefois, dans les deux dernières décennies, on a introduit des méthodes qui évitent les émissions de SO<sub>2</sub> (encadré 22.2).

$$Cu_2S + O_2 \rightarrow 2Cu + SO_2 \tag{22.6}$$

On effectue la purification électrolytique de Cu en construisant une pile avec Cu impur à l'anode, Cu pur à la cathode et  $CuSO_4$  comme



#### **RESSOURCES ET ENVIRONNEMENT**

#### Encadré 22.2 Cuivre : ressources et recyclage

Les ressources de cuivre à la surface de la terre ont été réévaluées récemment. On pense qu'environ 550 millions de tonnes sont présentes dans les minéraux du substrat rocheux et dans les nodules océaniques. Le principal minerai de cuivre pour l'extraction traditionnelle est la chalcopyrite (CuFeS<sub>2</sub>). Le processus d'extraction conventionnel comporte une fusion et produit de grandes quantités de SO<sub>2</sub> (encadré 16.5). On peut empêcher la libération de SO<sub>2</sub> dans l'atmosphère par la production d'acide sulfurique comme produit secondaire (figure 16.2). Dans les années 1980, on a introduit une nouvelle méthode d'extraction du cuivre qui utilise H<sub>2</sub>SO<sub>4</sub> provenant du procédé de fusion pour extraire Cu des minerais de cuivre autres que ceux utilisés dans l'extraction traditionnelle, p. ex. l'azurite (2CuCO<sub>3</sub>·Cu(OH)<sub>2</sub>) et la malachite (CuCO<sub>3</sub>·Cu(OH)<sub>2</sub>). Le cuivre est extrait sous forme de CuSO<sub>4</sub> aqueux. Celui-ci est mélangé avec un solvant organique capable d'extraire les ions Cu2+ en échangeant ceux-ci avec des ions H<sup>+</sup>, ce qui donne H<sub>2</sub>SO<sub>4</sub> qui est recyclé dans l'étape de lessivage de l'opération. Le passage de la phase aqueuse à la phase organique sépare les ions  $Cu^{2+}$  des impuretés. On ajoute alors de l'acide, ce qui fait passer à nouveau  $Cu^{2+}$  dans la phase aqueuse qui est électrolysée pour donner le cuivre métallique. Le procédé global est appelé extraction par solvant/extraction électrolytique (SX/EW = « solvent-extraction/electrowinning ») et fonctionne à température ambiante. C'est un procédé hydrométallurgique bon pour l'environnement, mais comme il repose sur H<sub>2</sub>SO<sub>4</sub>, il est couramment couplé au traitement conventionnel par fusion des minerais sulfurés. En Amérique du Sud,  $\approx 40$  % du Cu est extrait actuellement (2006) par le procédé SX/EW. Dans les régions où les minerais sulfurés sont prédominants, le cuivre est lessivé à l'aide de bactéries. Une bactérie naturelle appelée Acidithiobacillus thiooxidans oxyde l'ion sulfure en ion sulfate, et ce procédé de biolessivage fonctionne maintenant en parallèle avec SX/EW, pour une fraction importante, comme substitut des opérations de traitement par fusion conventionnelles.

Parmi les métaux, la consommation du cuivre n'est dépassée que par celles de l'acier et de Al. La récupération de Cu des déchets métalliques est une partie essentielle des industries fondées sur le cuivre, p. ex. en 2005 aux USA, le métal recyclé constituait  $\approx$  30 % de l'approvisionnement en Cu. La production minière mondiale était en 2005 de 14,9 Mt, dont 35,7 % provenait du Chili et 7,8 % des USA (les principaux producteurs mondiaux). Le recyclage du



La première étape du procédé SX/EW : une zone de lessivage dans une mine de cuivre en Arizona aux USA. *Chris Shinn / Mira.com* 

métal est important pou des raisons environnementales : le déversement des déchets provoque la pollution, p. ex. des approvisionnements d'eau. Dans l'industrie électronique, on utilise des solutions de  $NH_3-NH_4Cl$  en présence de  $O_2$  pour graver Cu dans les circuits imprimés. Les déchets de  $Cu^{2+}$  résultants sont soumis à un procédé analogue à SX/EW décrit précédemment. Les déchets sont traités d'abord par un solvant organique XH qui est un composé du type RR'C(OH)C(NOH)R", dont la base conjuguée peut se comporter comme un ligand :

$$[Cu(NH_3)_4]^{2+}(aq) + 2XH(org)$$

 $\rightarrow$  CuX<sub>2</sub>(org) + 2NH<sub>3</sub>(aq) + 2NH<sub>4</sub><sup>+</sup>(aq)

où aq et org représentent respectivement la phase aqueuse et la phase organique. On traite ensuite par  $H_2SO_4$ :

 $CuX_2 + H_2SO_4 \rightarrow CuSO_4 + 2XH$ 

puis Cu est récupéré par des méthodes électrolytiques :

À la cathode :  $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$ 

électrolyte. Au cours de l'électrolyse, Cu est transféré de l'anode à la cathode, ce qui donne un métal de haute pureté (p. ex. utilisable pour les fils électriques, l'utilisation la plus importante) et un dépôt sous l'anode dont on peut extraire Ag et Au métalliques. Le recyclage du cuivre est important (encadré 22.2). Comme il résiste à la corrosion, Cu est très demandé pour les conduites d'eau et de vapeur, et il est très utilisé pour l'extérieur des bâtiments, p. ex. les toitures, où une exposition longue donne une patine verte de sulfate basique ou de carbonate de cuivre. Les alliages de Cu comme le laiton (Cu/Zn) (**paragraphe 6.7**), le bronze (Cu/Sn), le maillechort (Cu/Zn/Ni) et le métal monétaire (Cu/Ni) sont commercialement importants. Le sulfate de cuivre(II) est largement utilisé comme fongicide. Le cuivre a un rôle biochimique essentiel, p. ex. dans la cytochrome oxydase (impliquée dans la réduction de  $O_2$  en  $H_2O$ ) et dans l'hémocyanine (une protéine à cuivre qui transporte  $O_2$  chez les arthropodes). Les composés de cuivre ont de nombreux usages catalytiques, et les applications analytiques comprennent le test du biuret et l'utilisation de la liqueur de Fehling (paragraphe 22.12).

Les principaux minerais du *zinc* sont la *sphalérite* (*blende de zinc*, ZnS, **figure 6.18**), la *calamine* (*hémimorphite*, Zn<sub>4</sub>Si<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>·H<sub>2</sub>O) et la *smithsonite* (ZnCO<sub>3</sub>). L'extraction à partir de ZnS comporte le grillage dans l'air pour donner ZnO suivi d'une réduction par le



**Fig. 22.3** Utilisations du zinc aux USA en 2005 [Données : US Geological Survey].

carbone. Le zinc est plus volatil (Éb = 1 180 K) que la plupart des métaux et peut être séparé par refroidissement rapide (pour empêcher la réaction inverse) et purifié par distillation ou par électrolyse. Le recyclage du zinc est devenu plus important et constitue une source secondaire du métal. La figure 22.3 résume les usages principaux de Zn. On l'utilise pour galvaniser l'acier (**paragraphe 6.7** et **encadré 8.4**), et les alliages de Zn sont commercialement importants, p. ex. le laiton (Cu/Zn) et le maillechort (Cu/Zn/ Ni). Les piles sèches utilisent le zinc comme anode (figure 22.2). Un développement récent est la batterie zinc-air pour les véhicules électriques. La réaction de pile est donnée dans le schéma 22.7, et les batteries épuisées peuvent être régénérées dans des centres de recyclage spécialisés.<sup>\*</sup>

| À l'anode :    | $\operatorname{Zn} + 4 [\operatorname{OH}]^{-} \rightarrow [\operatorname{Zn}(\operatorname{OH})_{4}]^{2-} + 2 e^{-}$ |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------|---|
|                | $\left[Zn(OH)_4\right]^{2-} \rightarrow ZnO + 2[OH]^- + H_2O$                                                         |   |
| À la cathode : | $\mathrm{O_2} + 2 \mathrm{H_2O} + 4 \mathrm{e^-} {\rightarrow} 4 \mathrm{[OH]^-}$                                     | ĺ |
| Globalement :  | $2 \operatorname{Zn} + \operatorname{O}_2 \rightarrow 2 \operatorname{ZnO}$                                           | J |
|                |                                                                                                                       |   |

(22.7)

L'oxyde de zinc est utilisé comme stabilisant de polymère et comme émollient dans les pommades au zinc, et pour la production de  $Zn_2SiO_4$  utilisé pour les luminophores des écrans de télévision. On l'utilise surtout dans l'industrie du caoutchouc, où il abaisse la température de la vulcanisation et permet de rendre celle-ci plus rapide (**paragraphe 16.4**). On utilise ZnO et ZnS comme pigments blancs, bien que TiO<sub>2</sub> leur soit supérieur pour la plupart des usages (**encadré 22.3** et **paragraphe 28.5**).

#### 22.3 Propriétés physiques : une vue d'ensemble

Un grand nombre de données physiques sur les métaux de la première rangée ont été étudiées précédemment dans ce livre. Des données supplémentaires sont classées ainsi :

- types de structures métalliques (tableau 6.2);
- valeurs du rayon ionique, r<sub>ion</sub>, qui dépend de la charge, de la géométrie et du fait que l'ion est à bas spin ou à haut spin (appendice 6);

 potentiels de réduction standard, E°(M<sup>2+</sup>/M) et E°(M<sup>3+</sup>/M<sup>2+</sup>) (tableaux 20.1 et 21.15 et appendice 11).

Pour les données spectroscopiques (p. ex.  $\Delta_{oct}$  et la constante de couplage spin-orbite) et les moments magnétiques, il faut consulter les paragraphes correspondants du **chapitre 21**.

#### 22.4 Groupe 3 : scandium

#### Le métal

Dans sa chimie, Sc présente une plus grande similitude avec Al qu'avec les métaux plus lourds du groupe 3 ; les valeurs de  $E^{\circ}$  sont données dans l'équation 22.8 pour une comparaison.

$$M^{3+}(aq) + 3e^{-} \rightleftharpoons M(s) \qquad \begin{cases} M = AI, E^{o} = -1,66 V\\ M = Sc, E^{o} = -2,08 V \end{cases}$$
(22.8)

Le scandium métallique se dissout dans les acides et dans les alcalis et se combine aux halogènes ; il réagit avec N<sub>2</sub> à haute température pour donner ScN qui est hydrolysé par l'eau. Le scandium présente normalement un seul état d'oxydation stable dans ses composés, Sc(III). Cependant, les réactions de ScCl<sub>3</sub> avec Sc à haute température donne un certain nombre de sous-halogénures (p. ex. Sc<sub>7</sub>Cl<sub>10</sub> et [Sc<sub>7</sub>Cl<sub>12</sub>]<sup>3-</sup>) qui possèdent des structures étendues à l'état solide. Par exemple, Sc<sub>7</sub>Cl<sub>12</sub> se présente sous forme d'un empilement compact de clusters [Sc<sub>6</sub>Cl<sub>12</sub>]<sup>3-</sup> avec des centres Sc(III) qui occupent les cavités octaédriques créées par les atomes Cl liés à des clusters voisins.

#### Scandium(III)

La combinaison directe des corps simples donne  $ScF_3$  anhydre (solide blanc insoluble dans l'eau),  $ScCl_3$  et  $ScBr_3$  (solides blancs solubles), et  $ScI_3$  (solide jaune sensible à l'humidité). Le fluorure cristallise avec la structure de ReO<sub>3</sub> (figure 22.4) dans laquelle chaque centre Sc est dans un environnement octaédrique ; comparez ce réseau à celui de la pérovskite (figure 6.23). Dans ScCl<sub>3</sub>, ScBr<sub>3</sub> et ScI<sub>3</sub> les atomes Sc occupent des sites octaédriques d'un arrangement hc des atomes d'halogène (c.-à-d. une structure de type BI<sub>3</sub>). Par réaction avec MF (M = Na, K, Rb, NH<sub>4</sub>), Sc F<sub>3</sub> forme des complexes solubles dans l'eau M<sub>3</sub>[ScF<sub>6</sub>] qui contiennent l'ion octaédrique [ScF<sub>6</sub>]<sup>3-</sup>.

L'addition d'alcali aqueux aux solutions de sels de Sc(III) précipite ScO(OH) qui est isostructural de AlO(OH). En présence d'un excès de  $[OH]^-$ , ScO(OH) se redissout sous forme de  $[Sc(OH)_6]^{3-}$ . La déshydratation de ScO(OH) donne Sc<sub>2</sub>O<sub>3</sub>.

La chimie de coordination de Sc(III) est beaucoup plus réduite que celle des autres ions métalliques de la première rangée du bloc *d* et elle se limite en général aux donneurs durs comme Net O. La coordinence 6 est favorisée, p. ex.  $[ScF_6]^{3-}$ ,  $[Sc(bpy)_3]^{3+}$ , *mer*- $[ScCl_3(OH_2)_3]$ , *mer*- $[ScCl_3(THF)_3]$  et  $[Sc(acac)_3]$ . Parmi les complexes ayant des coordinences plus élevées, on trouve  $[ScF_7]^{4-}$  (bipyramide pentagonale),

<sup>\*</sup> Pour d'autres détails, voir : J. Goldstein, I. Brown et B. Koretz (1999) Journal of Power Source, vol. 80, p. 171 – « New developments in the Electric Fuel Ltd. zinc/air system »

| Propriété                                                                                                                       | Sc                                                                             | Ti                                                                             | V                                                        | Cr                                                                                 | Mn                                                                             | Fe                                                                             | Co                                                   | Ni                                                       | Cu                                                                                   | Zn                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Numéro atomique Z<br>Aspect physique du métal<br>pur                                                                            | 21<br>Mou ;<br>blanc-argent ;<br>ternit à l'air                                | 22<br>Dur ;<br>couleur<br>argent<br>brillant                                   | 23<br>Mou ;<br>ductile ;<br>blanc<br>brillant            | 24<br>Dur ;<br>blanc-bleu                                                          | 25<br>Dur ; bleu-<br>argent<br>brillant                                        | 26<br>Assez<br>mou ;<br>malléa-<br>ble ; blanc<br>brillant                     | 27<br>Dur ; cas-<br>sant ;<br>blanc-bleu<br>brillant | 28<br>Dur, mal-<br>léable et<br>ductile ;<br>gris-blanc  | 29<br>Malléable<br>et ductile ;<br>rougeâtre                                         | 30<br>Cassant<br>à 298 K ;<br>malléable<br>373-423 K ;<br>blanc-bleu<br>brillant          |
| Point de fusion / K<br>Point d'ébullition/K<br>Configuration électroni-<br>que de l'état fondamental<br>$(cour = [\Delta r])$ : | 1 814<br>3 104                                                                 | 1 941<br>3 560                                                                 | 2 183<br>3 650                                           | 2 180<br>2 945                                                                     | 1 519<br>2 235                                                                 | 1 811<br>3 023                                                                 | 1 768<br>3 143                                       | 1 728<br>3 005                                           | 1 358<br>2 840                                                                       | 693<br>1 180                                                                              |
| $\begin{array}{c} \text{Atome} \\ M^{+} \\ M^{2+} \\ \text{Enthalpie d'atomisation,} \end{array}$                               | $ \begin{array}{r} 4s^2 3d^1 \\ 4s^1 3d^1 \\ 3d^1 \\ [Ar] \\ 378 \end{array} $ | $ \begin{array}{r} 4s^2 3d^2 \\ 4s^2 3d^1 \\ 3d^2 \\ 3d^1 \\ 470 \end{array} $ | $     4s^2 3d^3      3d^4      3d^3      3d^2      514 $ | $ \begin{array}{r} 4s^{1}3d^{5} \\ 3d^{5} \\ 3d^{4} \\ 3d^{3} \\ 397 \end{array} $ | $ \begin{array}{r} 4s^2 3d^5 \\ 4s^1 3d^5 \\ 3d^5 \\ 3d^4 \\ 283 \end{array} $ | $ \begin{array}{r} 4s^2 3d^6 \\ 4s^1 3d^6 \\ 3d^6 \\ 3d^5 \\ 418 \end{array} $ | $4s^2 3d^7$<br>$3d^8$<br>$3d^7$<br>$3d^6$<br>428     | $     4s^2 3d^8      3d^9      3d^8      3d^7      430 $ | $ \begin{array}{r} 4s^{1}3d^{10} \\ 3d^{10} \\ 3d^{9} \\ 3d^{8} \\ 338 \end{array} $ | $ \begin{array}{r} 4s^2 3d^{10} \\ 4s^{13} d^{10} \\ 3d^{10} \\ 3d^9 \\ 130 \end{array} $ |
| $\Delta_a H^o(298 \text{ K}) / \text{kJ.mol}^T$<br>Énergie de première<br>ionisation <i>EL</i> / kI mol <sup>-1</sup>           | 633,1                                                                          | 658,8                                                                          | 650,9                                                    | 652,9                                                                              | 717,3                                                                          | 762,5                                                                          | 760,4                                                | 737,1                                                    | 745,5                                                                                | 906,4                                                                                     |
| Énergie de deuxième ionisation, $EI_2$ / kJ.mol <sup>-1</sup>                                                                   | 1 235                                                                          | 1 310                                                                          | 1 414                                                    | 1 591                                                                              | 1 509                                                                          | 1 562                                                                          | 1 648                                                | 1 753                                                    | 1 958                                                                                | 1 733                                                                                     |
| Énergie de troisième ionisation, $EI_3$ / kJ.mol <sup>-1</sup>                                                                  | 2 389                                                                          | 2 653                                                                          | 2 828                                                    | 2 987                                                                              | 3 248                                                                          | 2 957                                                                          | 3 232                                                | 3 395                                                    | 3 555                                                                                | 3 833                                                                                     |
| Rayon métallique,<br>$r_{métal} / pm^{*}$<br>Résistivité électrique<br>( $\rho$ ) × 10 <sup>8</sup> / $\Omega$ .m (à 273 K) **  | 164<br>56 <sup>****</sup>                                                      | 147<br>39                                                                      | 135<br>18,1                                              | 129<br>11,8                                                                        | 137<br>143                                                                     | 126<br>8,6                                                                     | 125<br>5,6                                           | 125<br>6,2                                               | 128<br>1,5                                                                           | 137<br>5,5                                                                                |
|                                                                                                                                 | Sc                                                                             | Ti                                                                             | V                                                        | Cr                                                                                 | Mn                                                                             | Fe                                                                             | Со                                                   | Ni                                                       | Cu                                                                                   | Zn                                                                                        |
| Résistivité électrique<br>$(\rho) \times 10^8 / \Omega.m (à 273 K)^{**}$                                                        | 56 Sc                                                                          | 39<br>Ti                                                                       | 18,1<br>V                                                | 11,8<br>Cr                                                                         | 143<br>Mn                                                                      | 8,6<br>Fe                                                                      | 5,6<br>Co                                            | 6,2<br>Ni                                                | 1,5<br>Cu                                                                            | 5,5<br>Zn                                                                                 |

 Tableau 22.1
 Quelques propriétés physiques des métaux de la première rangée du bloc d.

\*Rayon métallique pour l'atome dodécacoordiné.

<sup>\*\*\*</sup> Voir l'équation 6.3 pour la relation entre la résistivité électrique et la résistance.

\*\*\* À 290-300 K.

$$\begin{split} & [ScCl_2(15\text{-}couronne-5)]^+ \ (figure \ 20.8d), \ [Sc(NO_3)_5]^{2-} \ (voir \ la \ fin \ du \ paragraphe \ 9.11) \ et \ [Sc(OH_2)_9]^{3+} \ (prisme \ triangulaire \ tricoiffé). \\ & Les \ ligands \ amido \ volumineux \ stabilisent \ les \ petites \ coordinences, \\ & p. \ ex. \ [Sc{N(SiMe_3)_2}_3]. \end{split}$$



**Fig. 22.4** Maille élémentaire de  $\text{ReO}_3$ , une structure prototype ; les atomes Re sont en brun et les atomes O en rouge. Ce type de structure est adopté par  $\text{ScF}_3$  et par  $\text{FeF}_3$ .

#### 22.5 Groupe 4 : titane

#### Le métal

Le titane ne réagit pas avec les alcalis (froids ou chauds) et ne se dissout pas dans les acides minéraux à température ambiante. Il est attaqué par HCl chaud en formant Ti(III) et H<sub>2</sub>, et HNO<sub>3</sub> chaud oxyde le métal en TiO<sub>2</sub> hydraté. Le fil de titane se dissout dans HF aqueux avec un dégagement vigoureux de H<sub>2</sub> et la formation de solutions vert-jaune contenant Ti(IV) et Ti(II) (équation 22.9).

$$2\text{Ti} + 6\text{HF} \to [\text{TiF}_6]^{2-} + \text{Ti}^{2+} + 3\text{H}_2$$
(22.9)

Le titane réagit avec la plupart des non-métaux à haute température ; avec C, O<sub>2</sub>, N<sub>2</sub> et les halogènes X<sub>2</sub>, il forme respectivement TiC, TiO<sub>2</sub> (figure 6.21), TiN (paragraphe 15.6) et TiX<sub>4</sub>. Avec H<sub>2</sub>, il forme « TiH<sub>2</sub> », mais celui-ci a un vaste domaine non-stoechiométrique, p. ex. TiH<sub>1,7</sub> (paragraphe 10.7). Les hydrures, le carbure (paragraphe 14.7), le nitrure et les borures (paragraphe 13.10) binaires sont tous des matériaux réfractaires inertes à haut point de fusion.



#### APPLICATIONS DANS L'INDUSTRIE ET AU LABORATOIRE

#### Encadré 22.3 Demande commerciale pour TiO<sub>2</sub>

Le dioxyde de titane a de grandes applications industrielles comme pigment blanc brillant et ses applications comme pigment aux USA en 2004 sont représentées dans le diagramme ci-dessous. Cette application commerciale provient du fait que les fines particules diffractent très fortement la lumière incidente ; même les cristaux de TiO<sub>2</sub> possèdent une indice de réfraction très élevé ( $\mu = 2,6$  pour le rutile, 2,55 pour l'anatase). Historiquement, on a utilisé des composés de Pb(II) comme pigments dans les peintures, mais les dangers sanitaires qui lui sont associés rendent le plomb indésirable ; les risques de TiO<sub>2</sub> sont négligeables. On utilise deux méthodes de fabrication :

- le procédé au sulfate produit TiO<sub>2</sub> sous forme de rutile et d'anatase;
- le *procédé au chlorure* produit du rutile.

La matière première du procédé au sulfate est l'ilménite, FeTiO<sub>3</sub> ; le traitement par H<sub>2</sub>SO<sub>4</sub> à 420-470 K donne Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> et TiOSO<sub>4</sub>. Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> est réduit et séparé sous forme de FeSO<sub>4</sub>.7H<sub>2</sub>O par un processus de cristallisation. L'hydrolyse de TiOSO<sub>4</sub> donne TiO<sub>2</sub> hydraté qui est ensuite déshydraté pour donner TiO<sub>2</sub>. Celui-ci est sous forme d'*anatase* jusqu'à ce qu'on l'ensemence avec des cristaux de *rutile* dans les étapes finales de la production. Le minerai rutile se trouve naturellement dans, par exemple, les veines d'apatite en Norvège, et constitue la matière première du procédé au chlorure. TiO<sub>2</sub> est d'abord transformé en TiCl<sub>4</sub> par un traitement avec Cl<sub>2</sub> et C à 1 200 K. L'oxydation par O<sub>2</sub> à ≈ 1 500 K donne du rutile pur.

À l'origine, le procédé au sulfate était le plus important dans l'industrie, mais depuis le début des années 1990 le procédé au chlorure a été favorisé, aussi bien pour des raisons financières que pour des raisons environnementales. Les deux procédés sont utilisés actuellement.

Le dioxyde de titane est un semi-conducteur et un excellent photocatalyseur pour la photominéralisation de l'eau, c.-à-d. la dégradation des polluants dans l'eau catalysée par  $TiO_2$  en présence d'un rayonnement UV. Les polluants qui peuvent être détruits avec succès comprennent une vaste gamme d'hydrocarbures et de composés

Dans ses composés, Ti présente les états d'oxydation + 4 (de loin le plus stable), + 3, + 2 et, rarement, 0.

#### Titane(IV)

On peut préparer les halogénures de titane(IV) à partir des corps simples. Industriellement, TiCl<sub>4</sub> est préparé en faisant réagir TiO<sub>2</sub> avec Cl<sub>2</sub> en présence de carbone, et on utilise aussi cette réaction pour la purification de TiO<sub>2</sub> dans le « procédé au chlorure » (encadré 22.3). Le fluorure de titane(IV) est un solide blanc hygroscopique qui donne HF par hydrolyse. La vapeur contient des molécules tétraédriques de TiF<sub>4</sub>. TiF<sub>4</sub> solide est constitué d'unités Ti<sub>3</sub>F<sub>15</sub> dans lesquelles les atomes Ti sont dans un environnement octaédrique ; organiques halogénés aussi bien que certains herbicides, pesticides et colorants. Les propriétés semi-conductrices de TiO<sub>2</sub> ont aussi conduit à son utilisation comme détecteur de gaz pour la détection de Me<sub>3</sub>N émis par les poissons en décomposition. On trouve d'autres utilisations de TiO<sub>2</sub> dans les cosmétiques et les céramiques, et dans les anodes de divers processus électrolytiques. TiO<sub>2</sub> est utilisé comme filtre UV dans les crèmes solaires et pour cet usage, le contrôle de la taille des particules est important car on obtient la diffraction optimale de la lumière lorsque le diamètre des particules de TiO<sub>2</sub> est 180-220 nm.



[Données : US Gelological Survey.]

#### Pour en savoir plus

- X. Chen et S.S. Man (2006) *Journal of Nanoscience and Nanotechnology*, vol. 6, p. 906 – « Synthesis of titanium dioxide (TiO<sub>2</sub>) nanomaterials ».
- U. Diebold (2003) *Surface Science Reports*, vol. 48, p. 53 « The surface science of titaniuim dioxide ».
- A. Mills, R.H. Davies et D. Worsley (1993) Chemical Society Reviews, vol. 22, p. 417 – « Water purification by semiconductor photocatalysis ».

Voir aussi le paragraphe 28.6.

les octaèdres qui partagent un sommet (figure 22.5) sont ensuite reliés par les atomes  $F_a$  (représentés dans la figure 22.5a) pour engendrer des colonnes isolées dans un dispositif infini. TiCl<sub>4</sub> et TiBr<sub>4</sub> s'hydrolysent plus facilement que TiF<sub>4</sub>. À 298 K, TiCl<sub>4</sub> est un liquide incolore (F = 249 K, Éb = 409 K) et TiBr<sub>4</sub> est un solide jaune. Le tétraiodure est un solide hygroscopique brun-rouge qui se sublime sous vide à 473 K en une vapeur rouge. Des molécules tétraédriques sont présentes dans la phase solide et dans la phase vapeur de TiCl<sub>4</sub>, de TiBr<sub>4</sub> et de TiI<sub>4</sub>. Chaque tétrahalogénure se comporte comme un acide de Lewis ; TiCl<sub>4</sub> est le plus important, utilisé avec AlCl<sub>3</sub>, des catalyseurs Ziegler-Natta pour la polymérisation des alcènes (**paragraphe 27.8**) et il catalyse plusieurs autres réactions organiques. On constate l'acidité de Lewis dans la formation des complexes. Il se combine aux amines et aux



**Fig. 22.5** La structure de TiF<sub>4</sub> à l'état solide est constituée d'empilements en colonnes d'octaèdres partageant des sommets. Les éléments de construction sont les unités  $Ti_3F_{15}$  représentées ici (a) par un schéma et (b) par des polyèdres ; les atomes F sont en vert. [Données : H. Bialowons *et al.* (1995) *Z. Anorg. Allg. Chem.*, vol. 621, p. 1227.]

phosphines tertiaires pour donner des complexes octaédriques comme [TiCl<sub>4</sub>(NMe<sub>3</sub>)<sub>2</sub>] et [TiCl<sub>4</sub>(PEt<sub>3</sub>)<sub>2</sub>]. Il vaut mieux préparer les sels qui contiennent [TiCl<sub>6</sub>]<sup>2–</sup> en solution dans le chlorure de thionyle puisqu'ils sont hydrolysés par l'eau ; les sels de [TiF<sub>6</sub>]<sup>2–</sup> peuvent être préparés dans l'eau. Avec la diarsine **22.1** (dont la préparation est donnée dans le **schéma 19.89**), il se forme le complexe [TiCl<sub>4</sub>(**22.1**)<sub>2</sub>]. La réaction de N<sub>2</sub>O<sub>5</sub> avec TiCl<sub>4</sub> donne [Ti(NO<sub>3</sub>)<sub>4</sub>] dans lequel le centre Ti(IV) est dans un environnement dodécaédrique (figure 22.6a).



Nous décrivons l'importance commerciale de TiO<sub>2</sub> dans l'encadré 22.3, et la structure de sa forme rutile a été montrée dans la **figure 6.21**. Bien qu'on puisse le formuler  $\text{Ti}^{4+}(\text{O}^{2-})_2$ , la valeur très élevée des quatre premières énergies d'ionisation du métal (8 797 kJ.mol<sup>-1</sup>) rend douteuse la validité du modèle ionique. TiO<sub>2</sub> anhydre est difficile à dissoudre dans les acides, mais la forme hydratée (précipitée par addition de base aux solutions des sels de Ti(IV)) se dissout dans HF, HCl et H<sub>2</sub>SO<sub>4</sub> en donnant respectivement des complexes fluro, chloro et sulfato. Il n'existe pas d'ion aqua simple de Ti<sup>4+</sup>. La réaction de TiO<sub>2</sub> avec CaO à 1 620 K donne



**Fig. 22.6** (a) Structure de Ti(NO<sub>3</sub>)<sub>4</sub> (diffraction des rayons X) montrant l'environnement dodécaédrique de l'atome Ti ; comparez avec la figure 20.9 [C.D. Garner *et al.* (1966) *J. Chem. Soc., A*, p. 1496] ; (b) structure de [Ca{Ti<sub>2</sub>(OEt)<sub>9</sub>}<sub>2</sub>] (diffraction des rayons X) ; les groupements Et ont été omis [E.P. Turevskaya *et al.* (1994) *J. Chem. Soc., Chem. Commun.*, p. 2303] ; (c) structure tétramère de [Ti(OEt)<sub>4</sub>], c.-à-d. [Ti<sub>4</sub>(OEt)<sub>16</sub>] où les groupements éthyle ont été omis par souci de clarté ; (d) structure de [Ti<sub>7</sub>( $\mu_4$ -O)<sub>2</sub>( $\mu_3$ -O)<sub>2</sub>(OEt)<sub>20</sub>] (diffraction des rayons X) ; les groupements Et ont été omis [R. Schmid *et al.* (1991) *J. Chem. Soc., Dalton Trans.*, p. 1999]. Code des couleurs : Ti, gris pâle ; O, rouge ; N, bleu ; Ca, jaune.

le *titanate* CaTiO<sub>3</sub> ; d'autres membres de ce groupe comprennent BaTiO<sub>3</sub> et FeTiO<sub>3</sub> (ilménite). Les titanates M<sup>II</sup>TiO<sub>3</sub> sont des oxydes *mixtes* et ne contiennent *pas* d'ions  $[TiO_3]^{2-}$ . Le type de structure dépend de la taille de  $M^{2+}$ ; si elle est grande (p. ex. M = Ca), un réseau pérovskite est favorisé (figure 6.23), mais si  $M^{2+}$  a une taille voisine de celle de Ti(IV), une structure de corindon (paragraphe 13.7), où M(II) et Ti(IV) remplacent deux centres Al(III), est préférée, p. ex. l'ilménite. Au-dessus de 393 K, BaTiO<sub>3</sub> a la structure de la pérovskite, mais aux températures inférieures il se transforme en trois phases successives qui sont toutes ferroélectriques, ce qui signifie que chaque phase a un moment dipolaire même en l'absence d'un champ magnétique extérieur. Cela vient du fait que le petit centre Ti(IV) a tendance à s'écarter du centre du trou octaédrique  $O_6$  (figure 6.23). L'application d'un champ électrique tire tous ces ions du même côté des trous, ce qui provoque une forte augmentation de la permittivité spécifique ; ainsi, on utilise les titanates de baryum comme condensateurs. L'application d'une pression sur un côté d'un cristal de BaTiO<sub>3</sub> provoque la migration des ions Ti<sup>4+</sup>, ce qui engendre un courant électrique (l'effet piézoélectrique, paragraphe 14.9), et cette propriété permet d'utiliser BaTiO<sub>3</sub> dans les dispositifs électroniques comme les microphones. L'intérêt pour les phases pérovskite comme BaTiO<sub>3</sub> et CaTiO<sub>3</sub> a conduit à des recherches sur des matériaux à l'état solide comme  $[M{Ti_2(OEt)_9}_2]$  (M = Ba ou Ca) (figure 22.6b) provenant de réactions des alcoolates de Ti(IV) avec Ba ou Ca. Les alcoolates de titane sont largement utilisés pour les tissus imperméables et pour les peintures résistant à la chaleur. On utilise des films minces de TiO<sub>2</sub> dans les condensateurs, et on peut les déposer à l'aide d'alcoolates de Ti(IV) comme [Ti(OEt)<sub>4</sub>]. L'éthanolate est préparé à partir de TiCl<sub>4</sub> et de Na[OEt] (ou à partir de TiCl<sub>4</sub>, de NH<sub>3</sub> et de EtOH) et a une structure tétramère (figure 22.6) dans laquelle chaque Ti est dans un environnement octaédrique. Des structures plus grandes qui conserve des « éléments de construction » TiO<sub>6</sub> peuvent être assemblées. Par exemple, la réaction de [Ti(OEt)<sub>4</sub>] avec EtOH anhydre à 373 K donne [Ti<sub>16</sub>O<sub>16</sub>(OEt)<sub>32</sub>], alors que le produit est [Ti<sub>7</sub>O<sub>4</sub>(OEt)<sub>20</sub>] (figure 22.6d) si CuCO<sub>3</sub> basique est présent. On observe des structures similaires pour les vanadates (paragraphe 22.6), les molybdates et les tungstates (paragraphe 23.7).



La réaction de TiO<sub>2</sub> avec TiCl<sub>4</sub> à 1 320 K dans un lit fluidisé donne [Cl<sub>3</sub>Ti( $\mu$ -O)TiCl<sub>3</sub>] qui réagit avec [Et<sub>4</sub>N]Cl pour donner [Et<sub>4</sub>N]<sub>2</sub>[TiOCl<sub>4</sub>]. L'ion [TiOCl<sub>4</sub>]<sup>2-</sup> (**22.2**) a une structure de pyramide à base carrée avec le ligand oxo en position apicale. On connaît un certain nombre de complexes peroxo de Ti(IV) qui comprennent les produits des réactions entre TiO<sub>2</sub> dans HF à 40 % et H<sub>2</sub>O<sub>2</sub> à 30 % ; à pH 9, le produit est [TiF<sub>2</sub>( $\eta^2$ -O<sub>2</sub>)<sub>2</sub>]<sup>2-</sup> alors qu'à pH 6, il se forme [TiF<sub>5</sub>( $\eta^2$ -O<sub>2</sub>)]<sup>3-</sup>. L'espèce dinucléaire [Ti<sub>2</sub>F<sub>6</sub>( $\mu$ -F)<sub>2</sub>( $\eta^2$ -O<sub>2</sub>)<sub>2</sub>]<sup>4-</sup> (**22.3**) est préparée en traitant [TiF<sub>6</sub>]<sup>2-</sup> par H<sub>2</sub>O<sub>2</sub> à 6 % à pH 5.

#### Titane(III)

On prépare le fluorure de titane(III) en faisant passer H<sub>2</sub> et HF sur Ti ou sur son hydrure à 970 K ; c'est un solide bleu (F = 1 473 K) avec une structure reliée à celle de ReO<sub>3</sub> (figure 22.4). Le trichlorure existe sous quatre formes ( $\alpha$ ,  $\beta$ ,  $\gamma$  et  $\delta$ ). La forme  $\alpha$  (un solide violet) est préparée par réduction de TiCl<sub>4</sub> au-dessus de 770 K et a une structure en couches avec les atomes Ti dans un environnement octaédrique. La forme  $\beta$  brune est préparée par chauffage de TiCl<sub>4</sub> avec des trialkylaluminiums ; elle est fibreuse et contient des octaèdres TiCl<sub>6</sub> qui ont une face en commun. Le trichlorure est disponible dans le commerce ; on l'utilise comme catalyseur pour la polymérisation des alcènes (**paragraphe 27.7**) et c'est un réducteur puissant. Dans l'air, TiCl<sub>3</sub> s'oxyde facilement et il se dismute au-dessus de 750 K (équation 22.10).

$$2\text{TiCl}_3 \rightarrow \text{TiCl}_4 + \text{TiCl}_2$$
 (22.10)

On prépare le tribromure de titane en chauffant TiBr<sub>4</sub> avec Al, ou par la réaction de BBr<sub>3</sub> avec TiCl<sub>3</sub>; c'est un solide gris ayant une structure en couches analogue à celle de  $\alpha$ -TiCl<sub>3</sub>. La réduction de TiI<sub>4</sub> par Al donne TiI<sub>3</sub> violet. TiBr<sub>3</sub> et TiI<sub>3</sub> se dismutent tous deux lorsqu'on les chauffe > 600 K. Le moment magnétique de TiF<sub>3</sub> (1,75  $\mu_B$  à 300 K) correspond à un seul électron célibataire par centre métallique. Toutefois, les données magnétiques pour TiCl<sub>3</sub>, TiBr<sub>3</sub> et TiI<sub>3</sub> indiquent des interactions Ti–Ti importantes à l'état solide ; pour TiCl<sub>3</sub>, le moment magnétique à 300 K est 1,31  $\mu_B$  et TiBr<sub>3</sub> n'est que faiblement paramagnétique.

Lorsqu'on réduit des solutions aqueuses de Ti(IV) par Zn, on obtient l'ion aqua violet  $[Ti(OH_2)_6]^{3+}$  (équation 7.35 et figure 21.4). C'est un réducteur puissant (équation 22.1) et il faut protéger les solutions aqueuses de Ti(III) de l'oxydation par l'air.

$$[\text{TiO}]^{2+}(aq) + 2\text{H}^{+}(aq) + e^{-} \rightleftharpoons \text{Ti}^{3+}(aq) + \text{H}_2\text{O}(1)$$
  
 $E^{\circ} = + 0,1 \text{ V}$  (22.11)

En solution alcaline (en partie à cause de l'implication de H<sup>+</sup> dans l'équilibre rédox 22.11 et en partie à cause de la faible solubilité du produit), les composés de Ti(III) libèrent H<sub>2</sub> de H<sub>2</sub>O et sont oxydés en TiO<sub>2</sub>. En l'absence d'air, l'alcali précipite Ti<sub>2</sub>O<sub>3</sub> hydraté des solutions de TiCl<sub>3</sub>. La dissolution de cet oxyde dans les acides donnent des sels qui contiennent  $[Ti(OH_2)_6]^{3+}$ , p. ex.  $[Ti(OH_2)_6]Cl_3$  et CsTi(SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O, ce dernier étant isomorphe avec d'autres aluns (**paragraphe 13.9**).

On prépare l'oxyde de titane(III) en réduisant  $TiO_2$  avec Ti à haute température. C'est un solide insoluble violet-noir avec une structure de corindon (paragraphe 13.7) qui présente une transition du semi-conducteur au métal par chauffage au-dessus de 470 K ou par dopage avec, par exemple, V(III). Les usages de  $Ti_2O_3$  comprennent les condensateurs en films minces.

Les complexes de Ti(III) ont en général des structures octaédriques, p. ex.  $[TiF_6]^{3-}$ ,  $[TiCl_6]^{3-}$ ,  $[Ti(CN_6]^{3-}$ ,  $trans-[TiCl_4(THF)_2]^-$ ,  $trans-[TiCl_4(py)_2]^-$ ,  $mer-[TiCl_3(THF)_3]$ ,  $mer-[TiCl_3(py)_3]$  et  $[Ti\{(H_2N)_2CO-O\}_6]^{3+}$ , et des moments magnétiques proches des valeurs du spin seul. Les exemples de complexes heptacoordinés comprennent  $[Ti(EDTA)(OH_2)]^-$  et  $[Ti(OH_2)_3(ox)_2]^-$ .

#### États d'oxydation inférieurs

On peut prépare le chlorure, le bromure et l'iodure de titane(II) par dismutation thermique de TiX<sub>3</sub> (équation 22.10) ou par la réaction 22.12. Ce sont des solides rouges ou noirs qui adoptent la structure de CdI<sub>2</sub> (figure 6.22).

$$\text{TiX}_4 + \text{Ti} \xrightarrow{\Delta} 2\text{TiX}_2$$
 (22.12)

Avec l'eau, TiCl<sub>2</sub>, TiBr<sub>2</sub> et TiI<sub>2</sub> réagissent violemment en libérant H<sub>2</sub> à mesure que Ti(II) s'oxyde. Cependant, l'équation 22.9 montre que l'ion Ti<sup>2+</sup> peut se former en solution aqueuse dans des conditions appropriées. Ti ou TiCl<sub>3</sub> dissous dans HF aqueux donne un mélange de  $[TiF_6]^{2-}$  et de  $[Ti(OH_2)_6]^{2+}$ . On peut précipiter le premier sous forme de Ba[TiF<sub>6</sub>] ou de Ca[TiF<sub>6</sub>] et l'ion restant  $[Ti(OH_2)_6]^{2+}$  ( $d^2$ ) présente un spectre d'absorption électronique avec deux bandes à 430 et 650 nm, qui est semblable à celui de l'ion isoélectronique  $[V(OH_2)_6]^{3+}$ .

L'oxyde de titane(II) est fabriqué en chauffant TiO<sub>2</sub> et Ti sous vide. C'est un solide noir et un conducteur métallique qui adopte une structure de type NaCl avec un sixième des sites anioniques et cationiques inoccupés. L'oxyde est un *composé non-stoechio-métrique* dont la composition est typiquement dans le domaine TiO<sub>0,82</sub>-TiO<sub>1,23</sub>. TiO est utilisé commercialement dans les systèmes électrochromes (encadré 23.4). Les propriétés conductrices des oxydes des métaux(II) de la première rangée sont comparées au paragraphe 28.3.

La réduction de TiCl<sub>3</sub> avec Na/Hg, ou de TiCl<sub>4</sub> avec Li dans le THF et la 2,2'-bipyridine donne [Ti(bpy)<sub>3</sub>] violet. Formellement, celui-ci contient Ti(0), mais les résultats des calculs d'OM et les études spectroscopiques indiquent que la délocalisation des électrons se fait de telle sorte qu'on peut considérer que le complexe est [Ti<sup>3+</sup>(bpy<sup>-</sup>)<sub>3</sub>]; voyez aussi la fin du **paragraphe 20.5** et l'étude des complexes contenant le ligand **20.12** au **paragraphe 20.7**.

#### **Exercices autodidactiques**

 La structure de TiO<sub>2</sub> (rutile) est une « structure-prototype ». Qu'est-ce que cela signifie ? Quels sont les environnements de coordination des centres Ti et O ? Donnez deux autres exemples de composés qui adoptent la même structure que TiO<sub>2</sub>.

[Rép. Voir la figure 6.21 et la discussion]

2. Le  $pK_a$  de  $[Ti(OH_2)_6]^{3+}$  est 3,9. À quel équilibre se rapporte cette valeur ? Comment la force acide de  $[Ti(OH_2)_6]^{3+}$  aqueux peut-elle se comparer à celles de MeCO<sub>2</sub>H,  $[Al(OH_2)_6]^{3+}$ , HNO<sub>2</sub> et HNO<sub>3</sub> ?

[Rép. Voir les équations 7.38 et 7.9, 7.14, 7.15 et 7.36]

3. Quelle est la configuration électronique de l'ion Ti<sup>3+</sup>? Expliquez pourquoi le spectre électronique de [Ti(OH<sub>2</sub>)<sub>6</sub>]<sup>3+</sup> présente une absorption avec un épaulement plutôt qu'une simple absorption ?

[*Rép.* Voir le paragraphe 21.7, après l'exemple résolu 21.3]

4. Le spectre d'absorption électronique de  $[Ti(OH_2)_6]^{2+}$  est constitué de deux bandes attribuées aux transitions « d-d ». Cela est-il en accord avec ce que prédit le diagramme d'Orgel de la figure 21.20 ? Commentez votre réponse.

#### 22.6 Groupe 5 : vanadium

#### Le métal

Sous plusieurs aspects, V métallique est semblable à Ti. Le vanadium est un réducteur puissant (équation 22.13), mais il est passivé par une couche d'oxyde.

$$\mathbf{V}^{2+} + 2\mathbf{e}^{-} \rightleftharpoons \mathbf{V} \qquad \qquad E^{\mathbf{o}} = -1,18 \, \mathbf{V} \qquad (22.13)$$

Le métal est insoluble dans les acides non-oxydants (sauf HF) et les alcalis, mais il est attaqué par HNO<sub>3</sub>, par l'*eau régale* et par les solutions de peroxodisulfate. Par chauffage, V réagit avec les halogènes (équation 22.14) et il se combine à O<sub>2</sub> pour donner V<sub>2</sub>O<sub>5</sub>, et à B, C et N<sub>2</sub> pour donner des matériaux à l'état solide (**paragraphes 13.10, 14.7** et **15.6**).

$$V \begin{cases} \stackrel{F_2}{\longrightarrow} VF_5 \\ \stackrel{Cl_2}{\longrightarrow} VCl_4 \\ \stackrel{X_2}{\longrightarrow} VX_3 \quad (X = Br \text{ ou } I) \end{cases}$$
(22.14)

Les états d'oxydation normaux du vanadium sont +5, +4, +3 et +2 ; on trouve 0 dans certains composés ayant des ligands accepteurs  $\pi$ , p. ex. V(CO)<sub>6</sub> (chapitre 24).

#### Vanadium(V)

Le seul halogénure binaire du vanadium(V) est VF<sub>5</sub> (équation 22.14). C'est un solide blanc volatil qui s'hydrolyse facilement et qui est un agent fluorant puissant. En phase gazeuse, VF<sub>5</sub> est sous la forme de molécules en bipyramide triangulaire, mais le solide a une structure polymérique (**22.4**). Les sels K[VF<sub>6</sub>] et [XeF<sub>11</sub>][VF<sub>6</sub>] sont préparés en faisant réagir VF<sub>5</sub> avec KF ou XeF<sub>6</sub> (à 250 K) respectivement.



Les oxyhalogénures VOX<sub>3</sub> (X = F ou Cl) sont préparés par halogénation de V<sub>2</sub>O<sub>5</sub>. la réaction de VOF<sub>3</sub> avec (Me<sub>3</sub>Si)<sub>2</sub>O donne VO<sub>2</sub>F et le traitement de VOCl<sub>3</sub> avec Cl<sub>2</sub>O donne VO<sub>2</sub>Cl. Les oxyhalogénures sont hygroscopiques et s'hydrolysent facilement. Vo<sub>2</sub>F et VO<sub>2</sub>Cl se décomposent par chauffage (équation 22.15).

$$3VO_2X \xrightarrow{\Delta} VOX_3 + V_2O_5$$
 (X = F ou Cl) (22.15)

 $V_2O_5$  pur est une poudre orange ou rouge selon son état de division, et il est fabriqué par chauffage de [NH<sub>4</sub>][VO<sub>3</sub>] (équation 22.16).

$$2[\mathrm{NH}_4][\mathrm{VO}_3] \xrightarrow{\Delta} \mathrm{V}_2\mathrm{O}_5 + \mathrm{H}_2\mathrm{O} + 2\mathrm{NH}_3 \tag{22.16}$$

L'oxyde de vanadium(V) est amphotère ; il est peu soluble dans l'eau, mais il se dissout dans les alcalis pour donner une vaste gamme de vanadates, et dans les acides forts pour former des complexes de  $[VO_2]^+$ . Les espèces présentes dans les solutions contenant du vanadium(V) dépendent du pH :

ph 14 
$$[VO_4]^{4-}$$
  
 $[VO_3(OH)]^{2-}$  en équilibre avec  $[V_2O_7]^{4-}$   
pH 6  $[V_4O_{12}]^{4-}$   
 $[H_nV_{10}O_{28}]^{(6-n)-}$   
 $V_2O_5$   
pH 0  $[VO_2]^+$ 

On peut exprimer cette relation par une série d'équilibres comme les équations 22.17–22.23.

$$\left[\mathrm{VO}_{4}\right]^{3-} + \mathrm{H}^{+} \rightleftharpoons \left[\mathrm{VO}_{3}(\mathrm{OH})\right]^{2-} \tag{22.17}$$

$$2[VO_3(OH)]^{2-} \rightleftharpoons [V_2O_7]^{4-} + H_2O$$
 (22.18)

 $[\mathrm{VO}_{3}(\mathrm{OH})]^{2-} + \mathrm{H}^{+} \rightleftharpoons [\mathrm{VO}_{2}(\mathrm{OH})_{2}]^{-}$ (22.19)

$$4[\mathrm{VO}_2(\mathrm{OH})_2]^- \rightleftharpoons [\mathrm{V}_4\mathrm{O}_{12}]^{4-} + 4\mathrm{H}_2\mathrm{O}$$
(22.20)

$$10[V_{3}O_{9}]^{3-} + 15H^{+} \rightleftharpoons 3[HV_{10}O_{28}]^{5-} + 6H_{2}O$$
 (22.21)

$$[HV_{10}O_{28}]^{5-} + H^{+} \rightleftharpoons [H_2V_{10}O_{28}]^{4-}$$
(22.22)

$$[H_2V_{10}O_{28}]^{4-} + 14H^+ \rightleftharpoons 10[VO_2]^+ + 8H_2O$$
(22.23)

Les *isopolyanions* (*homopolyanions*) sont des oxoanions métalliques complexes (polyoxométallates) du type  $[M_xO_y]^{n+}$ , p. ex.  $[V_{10}O_{28}]^{6-}$ et  $[Mo_6O_{19}]^{2-}$ . Un *hétéropolyanion* contient un hétéroatome, p. ex.  $[PW_{12}O_{40}]^{3-}$ .

La formation de polyoxométallates est une caractéristique de V, Mo, W (paragraphe 23.7) et, dans une moindre mesure, de Nb, Ta et Cr. La caractérisation des espèces en solution est assistée par les spectroscopies de RMN-<sup>17</sup>O et de RMN-<sup>51</sup>V, et on connaît les structures à l'état solide de toute une gamme de sels. La chimie structurale de V2O5 et des vanadates est compliquée et nous n'en donnons ici qu'un bref aperçu. La structure de V<sub>2</sub>O<sub>5</sub> est constituée de couches de pyramides à base approximativement carrée partageant des arêtes (22.5) ; chaque centre V est lié à un O à 159 pm (site apical, non partagé), un O à 178 pm (partagé avec un autre V) et deux O à 188 pm et un O à 202 pm (partagés avec deux autres atomes V). Les sels de [VO<sub>4</sub>]<sup>3-</sup> (orthovanadates) contiennent des ions tétraédriques discrets, et ceux de  $[V_2O_7]^{4-}$  (*pyrovanadates*) contiennent aussi des anions discrets (figure 22.7a) ;  $[V_2O_7]^{4-}$  est isoélectronique et isostructural de  $[Cr_2O_7]^{2-}$ . L'ion  $[V_4O_{12}]^{4-}$  a une structure cyclique (figure 22.7b). Les sels anhydres de [VO<sub>3</sub>]<sup>-</sup> (métavanadates) contiennent des chaînes infinies d'unités VO<sub>4</sub> partageant un

sommet (figures 22.7c et d). Cependant, ce type de structure n'est pas commun à tous les métavanadates, p. ex. dans KVO<sub>3</sub>·H<sub>2</sub>O et Sr(VO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, chaque V est lié à cinq atomes O dans une structure à double chaîne. L'anion  $[V_{10}O_{28}]^{6-}$  existe en solution (au pH approprié) et a été caractérisé à l'état solide dans, par exemple,  $[H_3NCH_2CH_2NH_3]_2[V_{10}O_{28}]\cdot 6H_2O$  et  $[^{i}PrNH_3]_6[V_{10}O_{28}]\cdot 4H_2O$ (figure 22.7e). Il est constitué de 10 unités octaédriques VO<sub>6</sub> avec deux atomes  $\mu_6$ -O, quatre  $\mu_3$ -O, 14  $\mu$ -O et huit O terminaux. Des sels cristallins de  $[HV_{10}O_{28}]^{5-}$ , de  $[H_2V_{10}O_{28}]^{4-}$  et de  $[H_3V_{10}O_{28}]^{3-}$ ont également été isolés et les anions gardent la structure de la figure 22.7e. On connaît des exemples d'isopolyanions du vanadium avec des structures ouvertes (« en forme de coupe »), p. ex.  $[V_{12}O_{32}]^{4-}$ , et ceux-ci peuvent agir comme « hôtes » pour de petites molécules. Dans [Ph<sub>4</sub>P]<sub>4</sub>[V<sub>12</sub>O<sub>32</sub>]·4MeCN·4H<sub>2</sub>O, une molécule MeCN se trouve en partie dans la cavité de l'anion, alors qu'un ion  $[NO]^-$  est encapsulé dans  $[Et_4N]_5[NO][V_{12}O_{12}]$ .

La réduction de  $[VO_2]^+$  jaune en solution acide donne successivement  $[VO]^{2+}$  bleu,  $V^{3+}$  vert et  $V^{2+}$  violet. Le diagramme de potentiel de la figure 22.8 montre que tous les états d'oxydation en solution aqueuse sont stables vis-à-vis de la dismutation.



#### Vanadium(IV)

Le chlorure de vanadium qui contient le plus de chlore est VCl<sub>4</sub> (équation 22.14) ; c'est un liquide brun-rouge toxique (F = 247 K, Éb = 421 K) et les phases liquide et vapeur contiennent des molécules tétraédriques (**22.6**). Il s'hydrolyse facilement en VOCl<sub>2</sub> (voir ci-dessous) et à 298 K, il se décompose lentement (équation 22.24). La réaction de VCl<sub>4</sub> avec HF anhydre donne VF<sub>4</sub> vert citron (solide à 298 K) qui se forme aussi à côté de VF<sub>5</sub> lorsque V réagit avec F<sub>2</sub>. Par chauffage, VF<sub>4</sub> se dismute (équation 22.24).





**Fig. 22.7** (a) La structure de l'anion  $[V_2O_7]^{4-}$  est constituée de deux unités téraédriques partageant un atome d'oxygène commun ; (b) structure de  $[V_4O_{12}]^{4-}$  dans le sel  $[Ni(bpy)_3]_2[V_4O_{12}]\cdot11H_2O$  (diffraction des rayons X) [G.-Y. Yang *et al.* (1998) *Acta Crystallogr*, *Sect C*, vol. 54, p. 616] ; des chaînes infinies d'unités tétraédriques VO<sub>4</sub> partageant des sommets sont présentes dans les métavanadates anhydres ; on voit ici une partie d'une chaîne de  $[n-C_6H_{13}NH_3][VO_3]$  (détermination par diffraction des rayons X) [P. Roman *et al.* (1991) *Mater. Res. Bull.*, vol. 26, p. 19] ; (d) la structure de la chaîne du métavanadate représentée en (c) peut être représentée comme une chaîne de tétraèdres partageant des sommets, chaque tétraèdre représentant une unité  $VO_4$  ; (e) structure de  $[V_{10}O_{28}]^{6-}$  dans le sel  $[^{i}PrNH_3]_6[V_{10}O_{28}]\cdot4H_2O$ (diffraction des rayons X) [M.-T. Averbuch-Pouchot *et al.* (1994) *Eur. J. Solid State Inorg. Chem.*, vol. 31, p. 351] ; (f) dans  $[Et_4N]_5[V_{18}O_{42}I]$ (diffraction des rayons X), l'ion  $[V_{18}O_{42}]^{4-}$  contient des unités VO<sub>5</sub> en pyramide à base carrée et la cage encapsule  $\Gamma$ . [A. Müller *et al.* (1997) *Inorg. Chem.*, vol. 36, p. 5239]. Code des couleurs : V, jaune ; O, rouge ; I, violet.

$$2\text{VCl}_4 \rightarrow 2\text{VCl}_3 + \text{Cl}_2 \tag{22.24}$$

$$2VF_4 \xrightarrow{298 \text{ K}} VF_5 + VF_3 \tag{22.25}$$

La structure de VF<sub>4</sub> solide est constitué d'unités VF<sub>6</sub> reliées par des ponts V–F–V pour donner des cycles tétramères (comme dans CrF<sub>4</sub>, structure **22.14**) et ces motifs sont connectés par d'autres ponts fluor pour donner des couches. La réaction entre VF<sub>4</sub> et KF

dans HF anhydre donne  $K_2[VF_6]$  qui contient  $|VF_6]^{2-}$  octaédrique. Le bromure de vanadium(IV) est connu, mais il se décompose à 250 K en VBr<sub>3</sub> et Br<sub>2</sub>.



Fig. 22.8 Diagramme de potentiel du vanadium à pH 0.



- **22.9** Utilisez les données de l'appendice 11 pour prédire qualitativement le résultat de l'expérience suivante à 298 K : on dissout Cr dans un excès de HClO<sub>4</sub> molaire et on agite la solution à l'air.
- 22.10 La figure 22.36 montre l'évolution de la concentration de [MnO<sub>4</sub>]<sup>-</sup> avec le temps au cours d'une réaction avec des ions oxalate en milieu acide. (a) proposez une méthode de suivi de la réaction. (b) Expliquez la forme de la courbe.



Fig. 22.36 Figure du problème 22.10.

- **22.11** Commentez le mode de liaison des ligands dans les complexes de Mn(II) listés à la fin du paragraphe 22.8, en attirant l'attention sur les limites conformationnelles.
- 22.12 (a) Comment feriez-vous la distinction entre les formules Cu<sup>II</sup>Fe<sup>II</sup>S<sub>2</sub> et Cu<sup>I</sup>Fe<sup>III</sup>S<sub>2</sub> pour la *chalcopyrite* ? (b) Comment montreriez-vous que Fe<sup>3+</sup> est un cation dur ? (c) Comment montreriez-vous que le composé bleu qui précipite lorsqu'on réduit une solution de [MnO<sub>4</sub>]<sup>-</sup> dans KOH aqueux concentré par [SCN]<sup>-</sup> contient Mn(V) ?
- **22.13** Donnez les équations des réactions suivantes : (a) Fe avec  $Cl_2$ à chaud ; (b) Fe avec  $I_2$  à chaud ; (c) FeSO<sub>4</sub> solide avec  $H_2SO_4$ concentré ; (d) Fe<sup>3+</sup> aqueux avec [SCN]<sup>-</sup> ; (e) Fe<sup>3+</sup> aqueux avec  $K_2C_2O_4$ ; (f) FeO avec  $H_2SO_4$  dilué ; (g) FeSO<sub>4</sub> aqueux et NaOH.
- **22.14** Comment essaieriez-vous (a) d'estimer l'énergie de stabilisation du champ des ligands de FeF<sub>2</sub>, et (b) de déterminer la constante globale de stabilité de  $[Co(NH_3)_6]^{3+}$  en solution aqueuse sachant que le constante globale de formation de  $\{Co(NH_3)_6\}^{2+}$  est  $10^5$  et que :

$$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightleftharpoons \operatorname{Co}^{2+}(\operatorname{aq}) \qquad E^{\circ} = +1,92 \text{ V}$$

 $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}\!\!\left(\operatorname{aq}\right) + e^- \rightleftharpoons \left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{2+}\!\!\left(\operatorname{aq}\right)$ 

- $E^{\circ} = +0.11 \text{ V}$
- **22.15** Expliquez pourquoi  $Co_3O_4$  a une structure de spinelle normal plutôt qu'une structure de spinelle inverse.
- **22.16** Donnez des explications pour les observations suivantes. (a) Le complexe  $[Co(en)_2Cl_2]_2[CoCl_4]$  a un moment magnétique de 3,71  $\mu_B$  à température ambiante. (b) Le moment magnétique à température ambiante de  $[CoI_4]^{2-}$  (p. ex. 5,01  $\mu_B$  pour le sel de  $[Et_4N]^+$ ) est plus grand que celui des sels de  $[CoCl_4]^{2-}$ .
- 22.17 (a) Si on ajoute [CN]<sup>-</sup> à des ions Ni<sup>2+</sup> aqueux, il se forme un précipité vert ; si on ajoute un excès de KCN, le précipité se dissout pour donner une solution jaune et, aux concentrations élevées de [CN]<sup>-</sup>, la solution devient rouge. Proposez une explication de ces observations. (b) Si on isole le composé jaune de la partie (a) et si on le fait réagir avec Na dans NH<sub>3</sub> liquide, on peut isoler un produit rouge diamagnétique sensible à l'air. Suggérez son identité.
- **22.18** Le traitement d'une solution aqueuse de NiCl<sub>2</sub> par  $H_2NCHPhCHPhNH_2$  donne un complexe bleu ( $\mu_{eff} = 3,30 \,\mu_B$ ) qui perd  $H_2O$  par chauffage en donnant un composé jaune diamagnétique. Proposez des explications de ces observations et commentez la possibilité d'isomérie pour l'espèce jaune.
- **22.19** Donnez les équations de ces réactions : (a) NaOH aqueux avec  $CuSO_4$ ; (b) CuO avec Cu dans HCl concentré à reflux; (c) Cu avec HNO<sub>3</sub> concentré ; (d) addition de NH<sub>3</sub> aqueux à un précipité de Cu(OH)<sub>2</sub>; (e) ZnSO<sub>4</sub> avec NaOH aqueux suivi de l'addition d'un excès de NaOH; (f) ZnS avec HCl dilué.
- 22.20 (a) Comparez les structures à l'état solide de [M(Hdmg)<sub>2</sub>] pour M =Ni et Cu, et commentez le fait que [Cu(Hdmg)<sub>2</sub>] est plus soluble dans l'eau que [Ni(Hdmg)<sub>2</sub>]. (b) Suggérez les propriétés structurales probables de [Pd(Hdmg)<sub>2</sub>].
- 22.21 Le chlorure de cuivre(II) n'est pas entièrement réduit par SO<sub>2</sub> en solution dans HCl concentré. Proposez une explication de cette observation et indiquez comment vous essaieriez d'établir si votre explication est correcte.
- 22.22 Lorsque les ligands ne contrôlent pas stériquement la géométrie de coordination, les complexes tétracoordinés de (a) Pd(II), (b) Cu(I) et (c) Zn(II) préfèrent-ils être carrés plans ou tétraédriques ? Expliquez votre réponse. En l'absence de données cristallographiques, comment distingueriez-vous une structure carrée plane d'une structure tétraédrique pour un complexe de Ni(II) ?
- 22.23 Écrivez les formules de ces ions : (a) manganate(VII) ;
  (b) manganate(VI) ; (c) dichromate(VI) ; (d) vanadyle ;
  (e) vanadate (*ortho* et *méta*) ; (f) hexacyanoferrate(III). Donnez un autre nom pour le manganate (VII).
- **22.24** Donnez un bref exposé sur la variation des propriétés des oxydes binaires des métaux de la première rangée du bloc *d* lorsqu'on va ce Sc à Zn.
- **22.25** Donnez une vue d'ensemble de la formation des complexes halogénés du type  $[MX_n]^{m-}$  par les ions des métaux de la

première rangée du bloc *d*, en notant en particulier si des ions discrets sont présents dans l'état solide.

- **22.26** Lorsqu'on traite l'oxalate de fer(II) (oxalate =  $ox^{2-}$ ) par H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>ox et K<sub>2</sub>ox, on obtient un composé vert **X**. **X** réagit avec NaOH aqueux pour donner Fe<sub>2</sub>O<sub>3</sub> hydraté, et est décomposé par la lumière avec formation d'oxalate de fer(II), de K<sub>2</sub>ox et de CO<sub>2</sub>. L'analyse de **X** montre qu'il contient 11,4 % de Fe et 53,7 % de ox<sup>2-</sup>. Déduisez la formule de **X** et écrivez les équations de sa réaction avec l'alcali et de sa décomposition photochimique.
- **22.27** Le diméthylsulfoxyde (DMSO) réagit avec le perchlorate de cobalt(II) dans EtOH pour donner un composé rose **A** qui est un électrolyte 1:2 et qui a un moment magnétique de 4,9  $\mu_{\text{B}}$ . Le chlorure de cobalt(II) réagit aussi avec le DMSO, mais dans ce cas le produit bleu foncé **B** est un électrolyte 1:1, et son moment magnétique est de 4,6  $\mu_{\text{B}}$  par centre Co. Proposez la formule et la structure de **A** et de **B**.
- 22.28 Lorsqu'on fait passer H<sub>2</sub>S à travers une solution de sulfate de cuivre(II) acidifiée par H<sub>2</sub>SO<sub>4</sub>, le sulfure de cuivre(II) précipite. Lorsqu'on chauffe H<sub>2</sub>SO<sub>4</sub> concentré avec Cu métallique, le principal produit soufré est SO<sub>2</sub>, mais il se forme aussi un résidu de sulfure de cuivre(II). Expliquez ces réactions.

#### Problèmes généraux

- 22.29 (a) Écrivez une équation pour représenter la décharge d'une cellule électrolytique alcaline contenant une anode de Zn et une cathode de BaFeO<sub>4</sub>.
  - (b) La première bande de transfert de charge de [MnO<sub>4</sub>]<sup>-</sup> se trouve à 18 320 cm<sup>-1</sup>, et celle de [MnO<sub>4</sub>]<sup>2-</sup> à 22 940 cm<sup>-1</sup>. Expliquez l'origine de ces absorptions et commentez l'évolution des énergies relatives lorsqu'on passe de [MnO<sub>4</sub>]<sup>2-</sup> à [MnO<sub>4</sub>]<sup>-</sup>.
  - (c) Expliquez pourquoi FeS<sub>2</sub> adopte la structure de NaCl plutôt qu'un structure où le rapport Fe:S est 1:2.
- **22.30** (a) La valeur de  $\mu_{eff}$  de  $[CoF_6]^{3-}$  est 5,63  $\mu_B$ . Expliquez pourquoi cette valeur n'est pas en accord avec la valeur de  $\mu$  calculée par la formule du spin seul.
  - (b) En utilisant une simple approche par les OM, expliquez pourquoi l'oxydation à un électron du ligand pontant de  $[(CN)_5COOOCo(CN)_5]^{6-}$  conduit à un raccourcissement de la liaison O–O.
  - (c) Parmi les sels de ces ions complexes, quels sont ceux qui sont susceptibles d'apparaître sous forme de racémiques : [Ni(acac)<sub>3</sub>]<sup>-</sup>, [CoCl<sub>3</sub>(NCMe)]<sup>-</sup>, *cis*-[Co(en)<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup>, *trans*-[Cr(en)<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup>?
- **22.31** (a) Le spectre électronique de  $[Ni(DMSO)_6]^{2+}$  (DMSO = Me<sub>2</sub>SO) présente trois absorptions à 7 728, 12 970 et 24 038 cm<sup>-1</sup>. Attribuez ces absorptions.
  - (b) CuF<sub>2</sub> a une structure de rutile déformée (quatre Cu–F = 193 pm et deux Cu–F = 227 pm par centre Cu);

 $[CuF_6]^{2-}$  et  $[NiF_6]^{2-}$  sont des ions octaédriques déformés. Expliquez l'origine de ces déformations.

- (c) La dissolution du vanadium métallique dans HBr aqueux donne un complexe «  $VBr_3 \cdot 6H_2O$  ». La diffraction des rayons X révèle que le composé contient un cation complexe ayant un centre de symétrie. Proposez une formule pour le composé et une structure pour le cation.
- 22.32 Le complexe [V<sub>2</sub>L<sub>4</sub>], où HL est la diphénylformamidine, est diamagnétique. Chaque ligand L<sup>-</sup> se comporte comme un *N,N'*-donneur pontant tel que le complexe est structuralement similaire aux complexes du type [Cr<sub>2</sub>(O<sub>2</sub>CR<sub>4</sub>)].
  (a) Décrivez le schéma de liaison du cœur [V<sub>2</sub>]<sup>4+</sup> et déduisez-en l'ordre formel de la liaison métal-métal de [V<sub>2</sub>L<sub>4</sub>].
  (b) La réaction de [V<sub>2</sub>L<sub>4</sub>] avec KC<sub>8</sub> dans le THF donne K(THF)<sub>3</sub>[V<sub>2</sub>L<sub>4</sub>]. Quel est le rôle de KC<sub>8</sub> dans cette réaction ?
  (c) Prévoyez-vous que la longueur de la liaison V–V augmente ou diminue en passant de [V<sub>2</sub>L<sub>4</sub>] à K(THF)<sub>3</sub>[V<sub>2</sub>L<sub>4</sub>] ? Expliquez votre réponse.



Diphénylformamidine (HL)

22.33 (a) Le ligand 1,4,7-triazacyclononane,L, forme les complexes de nickel [NiL<sub>2</sub>]<sub>2</sub>[S<sub>2</sub>O<sub>6</sub>]<sub>3</sub>·7H<sub>2</sub>O et [NiL<sub>2</sub>][NO<sub>3</sub>]Cl·H<sub>2</sub>O. Les données de diffraction des rayons X révèlent que dans le cation de [NiL<sub>2</sub>][NO<sub>3</sub>]Cl·H<sub>2</sub>O, les longueurs des liaisons Ni–N sont dans l'intervalle 209–212 pm, alors que dans [NiL<sub>2</sub>]<sub>2</sub>[S<sub>2</sub>O<sub>6</sub>]<sub>3</sub>·7H<sub>2</sub>O, deux liaisons Ni–N (mutuellement *trans*) sont de 211 pm et les autres sont dans l'intervalle 196–199 pm. Expliquez ces données.



- (b) Expliquez pourquoi certains articles sur les propriétés de [Fe(bpy)<sub>3</sub>]<sup>2+</sup> à bas spin affirment que ses sels possèdent de très faibles moments magnétiques.
- (c) Le ligand HL peut être représenté ainsi :



Quel est le nom donné à ces formes de HL ? La base conjuguée de HL forme les complexes *mer*-[VL<sub>3</sub>]<sup>-</sup> et [V(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)L<sub>2</sub>]. Dessinez la structure de *mer*-[VL<sub>3</sub>]<sup>-</sup> et les structures des isomères possibles de [V(Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)L<sub>2</sub>].

## Chimie inorganique

#### La nouvelle référence en chimie inorganique

Chimie inorganique de Housecroft & Sharpe s'est imposé comme le manuel de référence dans ce domaine et a été complètement mis à jour dans cette troisième édition. Concu pour les étudiants, Chimie inorganique met l'accent sur l'enseignement des principes fondamentaux de la chimie inorganique d'une façon moderne et pertinente.

Chimie inorganique donne une présentation équilibrée des principes de base de la chimie physique inorganique et de la chimie descriptive des éléments. En utilisant des exemples résolus et des exercices auto-didactiques, Chimie inorganique renforce les liens entre ces deux thèmes. Il contient également des chapitres dévolus à des sujets particuliers, traitant de la cinétique et des mécanismes inorganiques, de la catalyse, de la chimie du solide et de la chimie bioinorganique.

#### Une présentation spectaculaire pour un meilleur apprentissage

Chimie inorganique a été conçu avec soin et contient des aides à l'enseignement pour améliorer l'apprentissage.

- Nouvelle référence en langue française
- Un traitement mis à jour des avancées récentes en chimie inorganique fondamentale.
- De nombreux exercices auto-didactiques
- De nouveaux encadrés sur les techniques expérimentales.
- Des encadrés sur les applications et les ressources, sur l'environnement et la biologie.
- Encadrés avec des photographies
- Des illustrations à visualiser en 3D sur le site : http://housecroft.deboeck.com

Un texte tout en couleurs et des illustrations tridimensionnelles donnent vie à la chimie inorganique. On a largement utilisé des encadrés sur des sujets particuliers pour relier la chimie à des problèmes de la vie quotidienne, à l'industrie chimique, à l'environnement et à sa législation, et aux ressources naturelles.

#### De nombreux outils pédagogiques

De nombreux exemples résolus conduisent pas à pas les étudiants à travers chaque calcul ou chaque exercice. Ils sont suivis d'exercices auto-didactiques voisins, avec leurs réponses pour améliorer la confiance en soi. Des problèmes de fin de chapitre (dont des problèmes 'généraux") renforcent l'apprentissage et développent la connaissance du sujet et des compétences. Les définitions surlignées et les listes de vérification à la fin des chapitres sont d'excellentes aides à la révision tandis que les suggestions de la rubrique "Pour en savoir plus", depuis les articles thématiques jusqu'aux publications récentes, encouragent les étudiants à explorer les sujets de façon plus approfondie.

#### Traduction de la 3<sup>e</sup> édition anglaise

André Pousse est Docteur ès-sciences Physiques, mention Chimie, Maître de Conférences à l'Université Louis Pasteur de Strasbourg : enseignements théoriques et pratiques de Chimie Organique et de Chimie Générale en premier, deuxième et troisième cycle.





