Claude Aslangul

Des mathématiques pour les sciences 2

Corrigés détaillés et commentés des exercices et problèmes

EXERCICES CORRIGÉS

Licence et Master : physique, chimie, SVT, économie

Des mathématiques pour les sciences 2

Corrigés détaillés et commentés des exercices et problèmes

Licence Maîtrise Doctorat

Mathématiques

ASLANGUL C., Des mathématiques pour les sciences. Concepts, méthodes et techniques pour la modélisation

BOGAERT P., Probabilités pour scientifiques et ingénieurs. Introduction au calcul des probabilités COTTET-EMARD F., Analyse

COTTET-EMARD F., Analyse 2. Calcul différentiel, intégrales multiples, séries de Fourier

COTTET-EMARD F., Calcul différentiel et intégral. Exercices et problèmes corrigés

COTTET-EMARD F., Algèbre linéaire et bilinéaire

DUPONT P., Exercices corrigés de mathématiques. Tome 1. 3º éd.

Dupont P., Exercices corrigés de mathématiques. Tome 2. 3º éd.

ETIENNE D., Exercices corrigés d'algèbre linéaire. Tome 1

ETIENNE D., Exercices corrigés d'algèbre linéaire. Tome 2

MARCHAND M., Outils mathématiques pour l'informaticien. Mathématiques discrètes. 2º éd.

Physique

ASLANGUL C., Mécanique quantique 1. Fondements et premières applications

ASLANGUL C., Mécanique quantique 2. Développements et applications à basse énergie. 3e éd.

ASLANGUL C., Mécanique quantique 3. Corrigés détaillés et commentés des exercices et des problèmes

BÉCHERRAWY T., Optique géométrique

BIÉMONT É., Spectroscopie atomique. Instrumentation et structures atomiques

BIÉMONT É., Spectroscopie moléculaire. Structures moléculaires et analyse spectrale

CHAMPEAU R.-J., CARPENTIER R., LORGERÉ I., Ondes lumineuses. Propagation, optique de Fourier, cohérence

MAYET F., Physique nucléaire appliquée

TAILLET R., Optique physique. Propagation de la lumière

WATSKY A., Thermodynamique macroscopique

Claude Aslangul

Des mathématiques pour les sciences 2

Corrigés détaillés et commentés des exercices et problèmes

EXERCICES CORRIGÉS

Pour toute information sur notre fonds et les nouveautés dans votre domaine de spécialisation, consultez notre site web: www.deboeck.com

© DB SUP s.a., 2013

Fond Jean Pâques, 4 – B-1348 Louvain-la-Neuve

2e tirage 2015

Tous droits réservés pour tous pays.

Il est interdit, sauf accord préalable et écrit de l'éditeur, de reproduire (notamment par photocopie) partiellement ou totalement le présent ouvrage, de le stocker dans une banque de données ou de le communiquer au public, sous quelque forme et de quelque manière que ce soit.

Imprimé en Belgique

Dépôt légal :

Bibliothèque nationale, Paris : septembre 2013

Bibliothèque royale de Belgique, Bruxelles : 2013/0074/156 ISBN 978-2-8041-8172-7

 $\mathring{A} Mina et Julien$ $\mathring{A} Laurence$

Préambule

Ce livre (actualisé) présente les corrigés détaillés et commentés des exercices et problèmes de l'ouvrage Des mathématiques pour les sciences (édition 2011), dont il reprend strictement la structure en chapitres ; le corrigé 12.3 correspond ainsi au troisième problème du chapitre 12, figurant dans le livre de cours dans la section 12.6 et donc numéroté 12.6.3.

L'esprit est aussi le même que celui du livre de cours : rigueur certes, mais mesurée et allégée par des hypothèses dont on pourrait s'affranchir au prix d'un effort hors de propos dans le contexte considéré, commentaires des résultats au risque de ce que certains pourront considérer comme des redondances, petites échappées vers des questions qui ne sont pas annexes même si elles peuvent sembler éloignées des questions en discussion.

Outre les commentaires indispensables pour que le corrigé ne se réduise pas en effet à une suite d'opérations algébriques, celui-ci inclut parfois un ou plusieurs compléments illustrant la question examinée, ou proposant des extensions susceptibles d'éveiller la curiosité du lecteur, quand ce ne sont pas des questions, livrées en vrac, dont l'auteur ne connaît pas la réponse.

Les énoncés de l'édition 2011 sont repris in extenso (dans une police différente) avant chaque solution, auxquels ont été ajoutés des problèmes ou des questions auparavant absents, signalés par le symbole ⑤. Si ces insertions ont fatalement provoqué ici et là une incrémentation de la numérotation, le lecteur ne devrait pas en être troublé. Par ailleurs, il est arrivé en de rares circonstances que la rédaction détaillée du corrigé suggère des modifications de l'énoncé, qui ont été rapportées dans le rappel de celui-ci en début de chaque problème. Notamment, des questions intermédiaires ont été parfois insérées lorsque la résolution s'est révélée plus délicate ou plus laborieuse que prévu.

Il est fait souvent référence au livre de cours, notamment lorsqu'il s'agit d'exploiter un résultat précis, le renvoi à une équation ou une égalité se faisant sous alors la forme (C-UV.XYZ). Si cette disposition technique a été adoptée pour la commodité du lecteur, elle ne doit en aucune façon le dissuader de la nécessité de consulter les grands classiques que sont les ouvrages de Titchmarsh [1], de Whittaker et Watson [2], de Bass [3], de Feller [4], [5], de Hamermesh [6], de Tinkham [7] et d'Arnold [8], pour ne citer que ceux inspirés d'instinct à l'auteur. Leur lecture (et relecture) est une source inépuisable d'enrichissement et d'approfondissement.

Qu'il me soit permis, une fois encore, d'exprimer mes plus vifs remerciements à Francis Germain, collaborateur irremplaçable par l'acuité de son esprit, la finesse de ses remarques et la pertinence de ses suggestions.

D'une page à l'autre, son aide fut aussi précieuse que son affectueuse présence.

¹La référence est relative à la 1^{ère} édition du livre de cours (2011).

Table des Matières

1	Alg	lgèbre linéaire				
	1.1	Étude de lois de composition \dots	1			
	1.2	Structures	3			
	1.3	Sous-espace vectoriel	4			
	1.4	Indépendance linéaire	5			
	1.5	Espace vectoriel des solutions d'une récurrence d'ordre 2	7			
	1.6	Opérations sur les matrices	9			
	1.7	Diagonalisation	17			
	1.8	Changement de base	20			
	1.9	Calcul d'un déterminant	25			
	1.10	Déterminant de van der Monde	26			
	1.11	Déterminant de Gram - Schmidt	28			
	1.12	Équation d'Abel	29			
	1.13	Équation de Fredholm	31			
	1.14	Équation de Volterra	37			
2	Rap	pels d'Analyse réelle	41			
	2.1	Développements limités	41			
	2.2	Formule de sommation (sommatoire) d'Abel	53			

3

2.3	Un argument d'nomogeneite (Cavaneri, 1653)	36
2.4	Développements en série entière	57
2.5	Une double inégalité utile	59
2.6	La relation fonctionnelle caractéristique de la fonction logarithme	61
2.7	Inégalité de Jenssen	61
2.8	Suites	64
2.9	Intégrales impropres	76
2.10	Séries numériques	84
2.11	À propos de la série harmonique	96
2.12	Une série exotique	99
2.13	Accélérateur de convergence (transformation d'Euler)	103
2.14	Série d'exponentielles	105
2.15	Séries de fonctions	106
2.16	Séries entières	114
2.17	Produits infinis	116
2.18	Fonctions définies par une intégrale	122
Fon	ctions d'une variable complexe	131
3.1	Opérations élémentaires sur les complexes	131
3.2	Interprétation géométrique des complexes	146
3.3	Un isomorphisme entre $\mathbb C$ et un ensemble de matrices	152
3.4	Entiers de Gauss	154
3.5	Inégalité intégrale de van der Corput	157
3.6	Un produit infini complexe	160
3.7	Étude d'une fonction	162
3.8	Sphère de Riemann	162

	3.9	Représentations d'une fonction d'une variable complexe	166
	3.10	Deux propriétés des fonctions holomorphes	172
	3.11	Existence de la dérivée d'une fonction $f(z)$	173
	3.12	Conditions de Cauchy - Riemann	174
	3.13	Quelques propriétés des fractions rationnelles	178
4	Inté	gration des fonctions d'une variable complexe	185
	4.1	Courbes et domaines	185
	4.2	Calcul direct d'intégrales	186
	4.3	Applications de la formule de Cauchy	195
	4.4	Une intégrale par la formule de Cauchy	199
	4.5	Intégrales de Wallis	199
	4.6	Une application du théorème de Liouville	201
	4.7	Une fonction holomorphe ?	202
	4.8	Formule de la moyenne	203
	4.9	Représentation intégrale des polynômes de Legendre $\ \ldots \ \ldots \ \ldots \ \ldots$	204
	4.10	Fonction génératrice, relation d'orthogonalité des polynômes de Legendre	206
	4.11	Étude d'une fonction	210
5	Rep résid	résentation des fonctions analytiques par des séries. Théorème de dus	$rac{\mathbf{s}}{213}$
	5.1	Développements en série entière	213
	5.2	Développements de Laurent	218
	5.3	Calcul de résidus	226
	5.4	Résidu en un pôle double	230
	5.5	Expression intégrale des fonctions de Bessel J_n	231
	5.6	Singularités d'une fonction	232

	5.7	Etude d'une fonction	238
	5.8	Étude d'une fonction définie par une intégrale	240
	5.9	Coupures	243
	5.10	Calcul d'une intégrale	245
	5.11	À propos de $\operatorname{Arctg} z$	248
	5.12	Variations sur une intégrale	253
	5.13	Prolongements analytiques	254
	5.14	Prolongement analytique de l'intégrale de Gauss $\ \ldots \ \ldots \ \ldots \ \ldots$	260
	5.15	Une limite pas si simple	263
	5.16	Une même série, deux fonctions différentes	266
6	App	lications élémentaires du théorème des résidus	269
	6.1	Calculs d'intégrales (fonctions à une détermination)	269
	6.2	Quelques intégrales	
	6.3	Une intégrale de Fourier	
	6.4	Le théorème fondamental de l'algèbre	
	6.5	Une formule de Poisson (1823)	
	6.6	Calculs d'intégrales (fonctions multiformes)	
	6.7	Un rien de supraconductivité	
	6.8	Formule d'interpolation de Hermite	
		•	
	6.9	Majoration de $\cot \pi z$ sur un grand carré	
	6.10	Somme de séries	376
	6.11	Une série impliquant les zéros de $\tan z = z$	383
	6.12	D'autres séries impliquant les zéros de $\tan z = z$	387

1	plex	re	- 393
	7.1	Forme historique d'Euler de la fonction $\Gamma(z)$	393
	7.2	Fonction $\Gamma(z)$	396
	7.3	À propos des fonctions d'Euler $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	400
	7.4	Une formule fondamentale d'Euler	405
	7.5	Au-delà de la formule de Stirling	407
	7.6	La fonction $\psi(z)$	412
	7.7	L'une des preuves de Riemann de la relation fonctionnelle satisfaite par la fonction $\zeta(z)$	425
	7.8	Nombres de Bernoulli	427
	7.9	Approximation d'une fonction définie par une intégrale	431
	7.10	Développements asymptotiques	434
	7.11	Méthode du col	436
	7.12	Comportement à l'infini d'une fonction définie par une intégrale	444
	7.13	Le nombre $\frac{\zeta(2n)}{\pi^{2n}}$, $n \in \mathbb{N}^*$, est rationnel	447
	7.14	Énergie libre complexe	452
	7.15	Transformation du Laplacien par transformation conforme	459
	7.16	Transformation d'une couronne coupée en rectangle	460
	7.17	Transformation de Joukovski	462
	7.18	Une application élémentaire de l'une des formules de Poisson	464
	7.19	Application d'une transformation conforme pour résoudre un problème de Dirichlet	465
8	Ana	lyse de Fourier	469
	8.1	Séries de Fourier	469
	8.2	Complétude des $e_n(x) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} e^{inx}$. Condition de Vitali	488

	8.3	Une particule pulsée	489
	8.4	Une particule qui rebondit sur des murs $\dots \dots \dots \dots \dots$	492
	8.5	Variations périodiques de température	493
	8.6	Quelques transformées de Fourier	499
	8.7	Retour sur la relation fonction nelle de la fonction $\zeta(z)$	501
	8.8	Résolution d'une équation différentielle et aux différences par la transformation de Fourier	507
	8.9	Transformée de Fourier du potentiel de Yukawa	511
	8.10	Transformation de Fourier d'une fonction discontinue	512
	8.11	Résolution d'une équation aux dérivées partielles à l'aide de la transformation de Fourier	514
	8.12	Régularisation du potentiel Coulombien dans \mathbb{R}^D	515
9	Trar	nsformation de Laplace	523
	9.1	Relations utiles à propos de la transformation de Laplace	523
	9.2	Quelques transformées de Laplace	525
	9.3	Une autre application intégrale	527
	9.4	Calcul d'une transformée de Laplace par sommation d'une série	528
	9.5	Transformée de Laplace du sinus intégral	530
	9.6	Applications de la formule d'inversion	533
	9.7	Équation différentielle à coefficients constants et transformation de Laplace $$.	540
	9.8	Application à une équation aux différences finies : les suites de Fibonacci	543
	9.9	Transformée de Laplace de la fonction partie entière $\mathbf{E}(t)$	550
	9.10	Calcul d'une intégrale et comportement d'un original	552
	9.11	Quelques convolutions	555
	9.12	Applications du théorème d'Efros	557
	9.13	Mouvement Brownien avec retard	559

	9.14	Fonction Bêta	564
	9.15	Équation différentielle à coefficients variables $\ \ldots \ \ldots \ \ldots \ \ldots$	565
	9.16	Transformée de Laplace de la fonction de Bessel $J_0(t)$	568
	9.17	Résolution d'une équation différentielle du troisième ordre	570
	9.18	À propos de la fonction partie entière $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	572
	9.19	Polynômes de Laguerre et transformation de Laplace	575
	9.20	Comportement asymptotique d'une fonction $f(t)$ déduit de sa transformée de Laplace	578
	9.21	Instabilité (amortissement) de Landau	580
	9.22	Relaxation brisée	594
10	Intr	oduction aux fonctions généralisées (distributions)	609
	10.1	Formule de Leibniz pour les distributions	609
	10.2	Sur l'espace $\mathcal G$	612
	10.3	Précurseur gaussien de $\delta(x)$	612
	10.4	Sur $\delta(u(x))$ et sa dérivée. Application à $\delta(1-x^2)$	614
	10.5	Régularisations	617
	10.6	Dérivation et intégration fractionnaires	620
	10.7	Transformée de Fourier des distributions x^z_{\pm}	625
	10.8	Distribution $(1-x^2)_+^z$	627
	10.9	Une curieuse formule de dérivation $\ldots \ldots \ldots \ldots \ldots \ldots$	639
	10.10	La distribution r^z dans \mathbb{R}^D et son rapport avec x_+^{z+D-1}	641
11	Équ	ations différentielles. Introduction aux fonctions de Green	645
	11.1	Quelques équations différentielles	645
	11.2	Approximations successives de la solution d'une équation du premier ordre (Picard)	658
	11.3	Points singuliers d'une équation différentielle	660

	11.4 Méthode de Fuchs	. 663
	11.5 Équation d'Airy	. 667
	11.6 Formule de Liouville pour le Wronskien d'une équation différentielle linéaire d'ordre N	
	11.7 Réduction à la forme canonique de Sturm - Liouville	. 672
	11.8 Relation entre une EDO et une équation de Volterra	. 673
	11.9 Équation de Clairaut	. 676
	11.10 Équation de Bernoulli	. 677
	11.11 Mouvement d'une fusée	. 679
	11.12 Une équation différentielle non-linéaire	. 681
	11.13 Quelques propriétés du propagateur. Théorème de Floquet	. 682
	11.14 Dérivée discrète d'une suite	. 685
	11.15 Détermination d'une suite à l'aide d'une fonction génératrice \dots	. 686
	11.16 Équations aux différences non-linéaires	. 687
	11.17 Fonctions de Green de quelques opérateurs élémentaires	. 691
	11.18 Fonction de Green de l'équation de Newton pour un champ uniforme variable en temps	. 694
	11.19 Résolution d'une équation différentielle	. 698
12	Équations aux dérivées partielles	701
	12.1 Équation de transport et transformée de Laplace	. 701
	12.2 L'équation de Black - Scholes	. 709
	12.3 Diffusion sur \mathbb{R}_+ avec une barrière parfaitement réfléchissante à l'origine	. 712
	12.4 Diffusion dans une boîte avec des murs absorbants ou rayonnants	. 722
	12.5 Équation de la chaleur entre deux parois isothermes	. 725
	12.6 Équation de diffusion avec source	. 727
	12.7 Problème de Cauchy pour des équations quasi-linéaires	. 729

	12.8	Corde vibrante et conditions de Dirichlet	732
	12.9	Corde vibrante amortie. Séparation des variables	734
	12.10) Équation de Euler - Tricomi	737
	12.1	l Équation de Burgers	743
	12.12	2 Vibrations d'une poutre	746
	12.13	3 Résolution d'une EDP fortement non-linéaire	751
13	Fone	ctions spéciales	755
	13.1	Relations de récurrence et fonctions caractéristiques des polynômes orthogonaux	755
	13.2	Équation différentielle caractéristique pour le poids $W(x)$ des polynômes orthogonaux	762
	13.3	Fonction hypergéométrique $F(\alpha, \beta, \gamma; z)$	766
	13.4	Fonctions de Bessel $J_n(z)$	770
	13.5	Quelques intégrales impliquant des fonctions de Bessel $\ \ldots \ \ldots \ \ldots$	777
	13.6	À propos des fonctions $\vartheta_{\alpha}(z, q)$	783
	13.7	Le produit infini de Jacobi pour les $\vartheta_\alpha.$ Démonstration de $\vartheta_1'=\vartheta_2\vartheta_3\vartheta_4$	788
	13.8	Sur les intégrales elliptiques complètes	796
	13.9	Les relations de Legendre pour les intégrales elliptiques complètes	798
14	Thé	orie des probabilités et applications	801
	14.1	Variable aléatoire à trois valeurs	801
	14.2	Une variable aléatoire	803
	14.3	Loi Gamma	804
	14.4	Variables aléatoires de Cauchy	807
	14.5	Fonction de répartition d'une variable aléatoire	808
	14.6	Ajustement empirique d'une variable aléatoire	812
	14.7	Loi de Pareto	814

	14.8 Lois de Maxweii et de Lapiace	810
	14.9 Loi de Gumbel	820
	14.10 Variables de Poisson	823
	14.11 Variable aléatoire et transformation de Laplace	824
	14.12 Variable aléatoire continue	826
	14.13 Étude de deux variables aléatoires	828
	14.14 Une marche dirigée	832
	14.15 Sur la fonction caractéristique	839
	14.16 De l'importance de bien connaître la fonction caractéristique	842
	14.17 À propos de la fonction de Cantor - Lebesgue $\ \ldots \ \ldots \ \ldots \ \ldots$	846
	14.18 Série de variables aléatoires indépendantes	849
	14.19 Une variable aléatoire peu ordinaire	856
	14.20 Lois composées	860
	14.21 Processus récurrents	863
15	Introduction à la théorie des groupes et à leur représentation	871
	15.1 Sur la structure de groupe	871
	15.2 Résolution d'équations dans un groupe	876
	15.3 Groupe des réels	877
	15.4 Rotations hyperboliques dans le plan	878
	15.5 Groupe des déplacements plans	879
	15.6 Groupe symplectique	884
	15.7 Quaternions	886
	15.8 Hybridation sp^2	890
	15.9 Groupe C_{2v}	895
	15.10 Symétrie de translation d'un réseau unidimensionnel	899

16	Éléments de dynamique des systèmes non-linéaires	903
	16.1 Des sangliers et des chasseurs	903
	16.2 Portrait de phase du double puits	908
	16.3 Un point critique variant comme une lemniscate	910
	16.4 Cycles-limites	911
	16.5 Itération	916
	16.6 Système non-linéaire	920
	16.7 Itération pour l'équation étudiée dans l'exercice 11.12	923
	16.8 Bifurcation du cerceau tournant	925
	16.9 Points fixes et stabilité	927
	16.10 Retour sur un canular numérique	929
	16.11 Oscillateur harmonique pulsé	932
	16.12 Application toile de tente	939
	16.13 Sur l'application logistique	944
	Bibliographie	947
	Index	953

Chapitre 1

Algèbre linéaire

"Comme pour tout, et donc pour une théorie mathématique, la beauté peut être perçue mais demeure inexplicable" (Arthur CAYLEY, 1821–1895)

1.1 Étude de lois de composition

1. On définit dans \mathbb{N} la loi de composition \star :

$$n \star n' \stackrel{\text{def}}{=} n + n' + n.n' \tag{1.1}$$

où + et . désigne l'addition et la multiplication usuelles. Analyser la commutativité et l'associativité, et l'existence d'un élément neutre.

Reprendre ces questions pour les deux lois de composition :

$$n \star n' \stackrel{\text{def}}{=} n + 2n'$$
 , $n \star n' \stackrel{\text{def}}{=} 2nn'$. (1.2)

- 2. Sur un ensemble E quelconque, on définit la loi $a \star b \stackrel{\text{def}}{=} b$. Étudier la commutativité et l'associativité ; montrer que tout élément est neutre à gauche. S'il existait un élément neutre à droite, à quoi se réduirait l'ensemble E ?
- 3. Sur l'ensemble ${\mathbb Q}$ des rationnels, on définit la loi suivante :

$$p \star q \stackrel{\text{def}}{=} p + \frac{1}{q} \tag{1.3}$$

Former toutes les compositions possibles avec quatre rationnels p, q, r et s dans un ordre donné (il existe 5 compositions, $[(p \star q) \star r] \star s$, $[p \star (q \star r)] \star s$, etc., toutes distinctes, montrant l'importance de la notion d'associativité).

4. Soit la loi de composition sur \mathbb{Q} : $p\star q\stackrel{\text{def}}{=} p\sqrt{3}+q$. À quelle condition sur $p,\ q,\ r$ et s le nombre $\frac{p\star q}{r+s}$ est-il rationnel ?

1. La loi de composition $n \star n' = n + n' + n \cdot n'$, $(n, n') \in \mathbb{N}^2$, n'implique que des opérations élémentaires commutatives : elle est donc commutative. En ce qui concerne l'associativité, on a :

$$n \star (n_1 \star n_2) = n + (n_1 + n_2 + n_1 \cdot n_2) + n \cdot (n_1 + n_2 + n_1 \cdot n_2) =$$

$$n + n_1 + n_2 + n_1 \cdot n_2 + n \cdot n_1 + n \cdot n_2 + n \cdot n_1 \cdot n_2 ,$$

$$(n \star n_1) \star n_2 = (n + n_1 + n \cdot n_1) + n_2 + (n + n_1 + n \cdot n_1) \cdot n_2 =$$

$$n + n_1 + n \cdot n_1 + n_2 + n \cdot n_2 + n_1 \cdot n_2 + n \cdot n_1 \cdot n_2 ;$$

les deux seconds membres sont égaux : l'opération \star est aussi associative. L'élément neutre, e, s'il existe, doit satisfaire $n \star e = n$, $\forall n \in \mathbb{N}$, égalité qui assure, si elle est vraie, $e \star n = n$, $\forall n \in \mathbb{N}$ en vertu de la commutativité. Maintenant :

$$n \star e = n \iff n = n + e + n.e \iff 0 = (1 + n).e$$
:

l'égalité de droite ne peut être satisfaite $\forall n \in \mathbb{N} : \star$ n'a pas d'élément neutre.

La loi $n \star n' \stackrel{\text{\tiny def}}{=} n + 2n'$ est manifestement non commutative :

$$n' \star n \stackrel{\text{def}}{=} n' + 2n \neq n + 2n' = n \star n'$$
.

En ce qui concerne l'associativité : $n \star (n_1 \star n_2) = n + 2(n_1 + 2n_2) = n + 2n_1 + 4n_2$, d'une part ; d'autre part :

$$(n \star n_1) \star n_2 = (n + 2n_1) + 2n_2 = n + 2n_1 + 2n_2$$
,

montrant que la loi n'est pas non plus associative. Pour l'élément neutre, on doit avoir $n\star e=n+2e=n$ et $e\star n=e+2n=n$; la première égalité donne e=0 mais la seconde est impossible à satisfaire : il n'existe pas d'élément neutre.

La loi $n\star n'\stackrel{\mbox{\tiny def}}{=} 2nn'$ est manifestement commutative ; l'associativité s'écrit :

$$n\star (n_1\star n_2) = 2n(2n_1n_2) = 4nn_1n_2 \ , \quad (n\star n_1)\star n_2 = 2(2nn_1)n_2 = 4nn_1n_2 \ ;$$

la loi est aussi associative.

2. La commutativité de la loi $a\star b\stackrel{\text{def}}{=}b$ s'écrit $a\star b=b\star a$, soit b=a: pour tout ensemble de cardinal supérieur à 1, la loi n'est pas commutative. L'associativité se jauge à l'égalité :

$$(a \star b) \star c \stackrel{?}{=} a \star (b \star c) \iff b \star c \stackrel{?}{=} a \star c \iff c \stackrel{?}{=} c$$
;

la dernière égalité est toujours vraie, montrant que la loi est associative. Visiblement, par définition de la loi, tout élément est neutre à gauche. Supposons maintenant qu'il existe un élément neutre à droite, e; on devrait alors avoir :

$$\forall a \in E, a \star e = e \star a \iff e = a$$

montrant que l'ensemble se réduit à $e: E = \{e\}.$

3. On a:

$$\begin{split} [(p \star q) \star r] \star s &= [(p + \frac{1}{q}) \star r] \star s = [(p + \frac{1}{q}) + \frac{1}{r}] \star s = [(p + \frac{1}{q}) + \frac{1}{r}] + \frac{1}{s} \ ; \\ [p \star (q \star r)] \star s &= [p \star (q + \frac{1}{r})] \star s = (p + \frac{1}{q + \frac{1}{r}}) \star s = p + \frac{1}{q + \frac{1}{r}} + \frac{1}{s} \ , \\ p \star [q \star (r \star s)] &= p \star [q \star (r + \frac{1}{s})] = p \star [q + \frac{1}{r + \frac{1}{s}}] = p + \frac{1}{q + \frac{1}{r + \frac{1}{s}}} \ , \end{split}$$

et ainsi de suite. Les différentes expressions obtenues montrent l'importance de la notion d'associativité.

4. Par définition de la LCI:

$$\frac{p \star q}{r \star s} = \frac{p\sqrt{3} + q}{r\sqrt{3} + s} = \frac{(p\sqrt{3} + q)(r\sqrt{3} - s)}{3r^2 - s^2} = \frac{3pr + \sqrt{3}(qr - ps) - qs}{3r^2 - s^2} \; ;$$

p, q, r et s étant rationnels, ce nombre est rationnel ssi ps = qr.

1.2 Structures

- 1. Soit l'ensemble E des nombres réels de la forme $p+q\sqrt{N}$ où p et q varient dans $\mathbb Q$ et N un entier positif donné qui n'est pas un carré parfait. Montrer que E est un sous-corps de $\mathbb R$.
- 2. On dit qu'un corps K est ordonné si l'on peut y définir un sous-ensemble K_+ d'éléments positifs, c'est-à-dire :

$$\exists\, K_+\subseteq K \text{ stable vis-\grave{a}-vis de}\, +\, \operatorname{et}\times , \forall\, k\in K\, :\, k\in K_+ \text{ ou } -k\in K_+ \text{ ou } k=0 \ ;$$
 cela étant, le symbole $k< k'$ signifie que $k'-k$ est positif.
$$\tag{1.4}$$

- (a) Montrer qu'entre deux éléments distincts k et k', k < k', on peut en trouver un autre. k''.
- (b) En déduire que tout corps ordonné possède nécessairement une infinité d'éléments.

1. Il s'agit de montrer que l'ensemble E des réels $x_{pq} \stackrel{\text{def}}{=} p + q\sqrt{N}$, où p et q sont rationnels et N un entier positif donné qui n'est pas un carré parfait, possède la structure de corps avec les deux LCI "+" et "\times" – ce dernier signe étant omis comme d'habitude – (tout comme dans l'écriture de définition des éléments de E), étant entendu que E est un sous-ensemble de \mathbb{R} .

En ce qui concerne la stabilité par la LCI "+" – c'est-à-dire la propriété de E d'être fermé pour cette loi (visiblement commutative) –, on doit montrer que la somme $(p+q\sqrt{N})+(p'+q'\sqrt{N})$ est de la forme $p''+q''\sqrt{N}$; on a :

$$(p+q\sqrt{N}) + (p'+q'\sqrt{N}) = p+p'+q\sqrt{N} + q'\sqrt{N} \stackrel{?}{=} p'' + q''\sqrt{N}$$

qui donne immédiatement p''=p+p' et q''=q+q' ; la stabilité de la multiplication s'analyse en écrivant :

$$(p+q\sqrt{N})(p'+q'\sqrt{N}) = pp'+qq'N+(pq'+p'q)\sqrt{N} \stackrel{?}{=} p''+q''\sqrt{N}$$

qui donne cette fois p'' = pp' + qq'N, qui est bien dans \mathbb{Q} , et $q'' = pq' + p'q \in \mathbb{Q}$. L'élément neutre pour "+" est x_{00} , l'opposé de x_{pq} étant $x_{-p-q} = -x_{pq}$. L'élément neutre de "×" est x_{10} , l'inverse de x_{pq} , x_{pq}^{-1} , étant donné par :

$$x_{pq}^{-1} = \frac{1}{p + q\sqrt{N}} = \frac{p - q\sqrt{N}}{p^2 - q^2N}$$
;

le dénominateur de droite n'est jamais nul puisque l'égalité $N=\frac{p^2}{q^2}$ signifierait que N est un carré parfait.

Tous comptes faits, l'ensemble E est bien un sous-corps de \mathbb{R} .

- 2. (a) Avec k < k', on a k+k' < k'+k' = 2k' et k+k' > k+k = 2k, d'où l'existence de $k'' = \frac{1}{2}(k+k')$ satisfaisant k < k'' < k'.
 - (b) Dès que l'on a trouvé un nombre tel que k'', on peut recommencer avec les couples (k, k'') et (k'', k'), etc., montrant que tout corps ordonné possède une infinité d'éléments.

1.3 Sous-espace vectoriel

- 1. Dans \mathbb{R}^4 , on considère l'ensemble des extrémités M des points dont les coordonnées x_i satisfont $\sum_{i=1}^4 x_i = 0$.
 - (a) Montrer que les vecteurs $\overrightarrow{\mathrm{OM}}$ forment un sous espace vectoriel de \mathbb{R}^4 .
 - (b) Trouver une base de ce sous-espace.
 - (c) Par extrapolation du même problème dans \mathbb{R}^3 , qualifier la nature géométrique de ce sous-espace.

2. Soit dans \mathbb{R}^3 le vecteur unitaire \vec{n} ; l'ensemble des vecteurs \vec{V} tels que $\vec{V}.\vec{n}=0$ est-il un sous-espace vectoriel ? Le décrire géométriquement.

- 1. (a) Soit deux vecteurs \overrightarrow{OM} et $\overrightarrow{OM'}$ ayant la propriété indiquée ; on vérifie immédiatement que tous les vecteurs $\lambda \overrightarrow{OM} + \lambda' \overrightarrow{OM'}$ la possèdent également, ce qui revient à vérifier que tous les propriétés de définition de la structure d'espace vectoriel sont satisfaites.
 - (b) Soit $\{\mathbf{e}_n\}_{1 \leq n \leq 4}$ une base de \mathbb{R}^4 ; par définition, tous les vecteurs \overrightarrow{OM} s'écrivent $x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3 (x_1 + x_2 + x_3)\mathbf{e}_4$, soit :

$$\overrightarrow{OM} = x_1(\mathbf{e}_1 - \mathbf{e}_4) + x_2(\mathbf{e}_2 - \mathbf{e}_4) + x_3(\mathbf{e}_3 - \mathbf{e}_4) ,$$

montrant que les trois vecteurs $\mathbf{e}_1 - \mathbf{e}_4$, $\mathbf{e}_2 - \mathbf{e}_4$ et $\mathbf{e}_3 - \mathbf{e}_4$ forment une base du sous-espace $\{\overrightarrow{OM}\}$.

- (c) On sait que, dans \mathbb{R}^3 , l'ensemble des points dont les trois coordonnées satisfont $x_1+x_2+x_2=0$ sont situés dans un plan contenant l'origine (tout comme dans \mathbb{R}^2 , $x_1+x_2=0$ est l'équation d'une droite passant par O). Par extrapolation, on voit que ce sous-espace $\{\overrightarrow{OM}\}$ de \mathbb{R}^4 constitue un hyper-plan.
- 2. Soit le vecteur unitaire $\vec{n} \in \mathbb{R}^3$ et deux vecteurs \vec{V}_1 et \vec{V}_2 de \mathbb{R}^3 , linéairement indépendants et tels que tels que $\vec{V}_i.\vec{n} = 0$. Pour tout vecteur $\vec{V} \stackrel{\text{def}}{=} \lambda_1 \vec{V}_1 + \lambda_2 \vec{V}_2$, la distributivité du produit scalaire permet d'écrire :

$$(\lambda_1 \vec{V}_1 + \lambda_2 \vec{V}_2) \cdot \vec{n} = \lambda_1 \vec{V}_1 \cdot \vec{n} + \lambda_2 \vec{V}_2 \cdot \vec{n} = \vec{0}$$

montrant que deux tels vecteurs engendrent un espace vectoriel de dimension 2, qui est ainsi un sous-espace de \mathbb{R}^3 . Il s'agit d'un plan normal à \vec{n} , dont la distance à l'origine est arbitraire.

1.4 Indépendance linéaire

1. Soit $\{\mathbf e_n\}_{1\leq n\leq N}$ un ensemble de N vecteurs linéairement indépendants. Montrer qu'il en va de même pour les N vecteurs $\{\mathbf f_n\}_{1\leq n\leq N}$ définis comme :

$$\mathbf{f}_n \stackrel{\text{def}}{=} \sum_{p=1}^n \mathbf{e}_p \ . \tag{1.5}$$

- 2. Soit les fonctions monômes x^n , n = 0, 1, ..., N.
 - (a) Sont-elles linéairement indépendantes ?

- (b) Comment s'appellent les vecteurs P(x) construits sur ces fonctions ?
- (c) Les dérivées P'(x) forment-elles un sous-espace vectoriel ? Si oui, quelle est la dimension de celui-ci ?

1. Soit une combinaison linéaire quelconque $\mathbf{F} \stackrel{\text{def}}{=} \sum_{n=1}^{N} \lambda_n \mathbf{f}_n$, qui s'écrit :

$$\mathbf{F} = \sum_{n=1}^{N} \lambda_n \mathbf{f}_n = \sum_{n=1}^{N} \sum_{p=1}^{n} \lambda_n \mathbf{e}_p = \sum_{p=1}^{N} \left(\sum_{n=p}^{N} \lambda_n \right) \mathbf{e}_p \equiv \sum_{p=1}^{N} \Lambda_p \mathbf{e}_p . \tag{1.6}$$

Les \mathbf{e}_p étant linéairement indépendants, la nullité de \mathbf{F} exige que Λ_p soit nul quel que soit p, d'où $\Lambda_N=0$ et donc $\lambda_N=0$; ensuite, $\Lambda_{N-1}=0$ donne $\lambda_{N-1}+\lambda_N=0$, d'où $\lambda_{N-1}=0$, etc., prouvant que $\mathbf{F}=0$ ssi tous les λ_n sont nuls.

2. (a) Soit $f(x) \stackrel{\text{def}}{=} \sum_{n=0}^{N} \lambda_n x^n$; pour montrer que $f(x) \equiv 0$ ssi tous les λ_n sont nuls, on forme les dérivées successives :

$$f'(x) = \sum_{n=1}^{N} n\lambda_n x^{n-1} = 0$$
, $f''(x) = \sum_{n=2}^{N} n(n-1)\lambda_n x^{n-2} = 0$,...

$$f^{(r)}(x) = \sum_{n=r}^{N} n(n-1)...(n-r)\lambda_n x^{n-r-1} = 0$$
, $f^{(N)}(x) = N!\lambda_N = 0$.

La dernière égalité donne $\lambda_N = 0$, la suivante, de la forme $a\lambda_{N-1} + b\Lambda_N = 0$, donne $\lambda_{N-1} = 0$ et de proche en proche, tous les λ_n sont nuls.

(b) Les vecteurs P(x) construits sur ces fonctions ne sont autres que les polynômes de degré N, $\sum_{n=0}^{N} c_n x^n$, dont on voit ainsi qu'ils forment un espace vectoriel \mathcal{E}_{N+1} , sur \mathbb{R} ou sur \mathbb{C} selon que les coefficients $\{c_n\}$ sont choisis dans un corps ou l'autre, la dimension de l'espace étant égale à N+1. Ces coefficients sont les *composantes* (contravariantes) du polynôme. La notion d'indépendance linéaire des monômes x^n est une autre expression du fait que deux polynômes (de même degré!) sont égaux ssi tous leurs coefficients sont égaux deux à deux.

Si l'on considère que N peut prendre n'importe quelle valeur dans \mathbb{N} , les différents espaces \mathcal{E}_{N+1} sont "emboîtés" les uns dans les autres au sens où $\mathcal{E}_{N+1} \subset \mathcal{E}_{M+1}$ si N < M. De plus, dans chacun d'entre eux on peut définir un produit scalaire suivant la règle $(x^n, x^m) \stackrel{\text{def}}{=} \int_a^b x^n \, x^m \mathrm{d}\mu(x)$ où $\mu(x)$ est une certaine fonction positive définissant la mesure. Quand elle est partout dérivable, on note usuellement $\mathrm{d}\mu(x) \stackrel{\text{def}}{=} W(x)\mathrm{d}x$, où la fonction W(x) est appelée poids. Cette approche est le point de départ de la définition des polynômes orthogonaux (voir chapitre 13, section 13.1); le produit scalaire de $P(x) \stackrel{\text{def}}{=} \sum_{n=1}^N c_n x^n$ et de $Q(x) \stackrel{\text{def}}{=} \sum_{m=1}^N d_m x^m$ est ainsi:

$$(P, Q) = \sum_{n=1}^{N} \sum_{m=1}^{N} c_n^* d_m g_{nm} = (Q, P)^*, \qquad g_{nm} \stackrel{\text{def}}{=} \int_a^b x^{n+m} W(x) dx,$$

où on a considéré un produit scalaire hermitien, gardant la possibilité de polynômes à coefficients complexes, mais le tenseur métrique ${\bf g}$ est ici réel.

Remarquer que l'on peut aussi considérer le produit scalaire de deux polynômes de degrés différents : si $Q(x) \in \mathcal{E}_{M+1}$ est de degré M > N, il suffit de réaliser que $P(x) \in \mathcal{E}_{N+1}$ appartient en fait à ce sous-espace vectoriel de \mathcal{E}_{M+1} , ayant toutes ses composantes nulles dans le complémentaire de \mathcal{E}_{N+1} dans \mathcal{E}_{M+1} .

(c) Les dérivées P'(x) sont égales à $\sum_{n=1}^{N} nc_n x^n \equiv \sum_{n=1}^{N} c'_n x^n$, et forment pour les mêmes raisons un espace vectoriel \mathcal{E}_N de dimension N-1, strictement inclus dans \mathcal{E}_{N+1} .

1.5 Espace vectoriel des solutions d'une récurrence d'ordre 2

Soit la relation de récurrence :

$$f(n+2) = af(n+1) + bf(n) , (1.7)$$

où a et b sont des réels, f une fonction inconnue et $n \in \mathbb{N}$.

- 1. Montrer que l'ensemble des solutions de (1.7) a la structure d'espace vectoriel sur \mathbb{R} .
- 2. Montrer que la donnée de f(0) et f(1) détermine complètement la solution.
- 3. En déduire que la solution générale est de la forme $C_1f_1(n) + C_2f_2(n)$, où les f_i sont deux solutions particulières linéairement indépendantes.
- 4. On cherche des solutions particulières de la forme r^n où $r \in \mathbb{R}$. À quelle condition sur a et b obtient-on deux solutions distinctes ?
- 5. Dans le cas contraire, on pose $f(n) = r^n \phi(n)$; étudier la suite de fonctions $\phi(n)$, et trouver alors la solution générale de (1.7).

1. C'est la linéarité de l'équation qui donne à l'ensemble de ses solutions une structure d'espace vectoriel. En effet, soit deux solutions $f_1(n)$ et $f_2(n)$:

$$f_1(n+2) = af_1(n+1) + bf_1(n)$$
, $f_2(n+2) = af_2(n+1) + bf_2(n)$.

Soit maintenant la combinaison linéaire quel conque $g\stackrel{\mbox{\tiny def}}{=} \lambda_1 f_1 + \lambda_2 f_2$; on a :

$$g(n+2) = \lambda_1 f_1(n+2) + \lambda_2 f_2(n+2) = \lambda_1 [af_1(n+1) + bf_1(n)] + \lambda_2 [af_2(n+1) + bf_2(n)] ;$$

le développement du second membre donne :

$$a[\lambda_1 f_1(n+1) + \lambda_2 f_2(n+1)] + b[\lambda_1 f_1(n) + \lambda_2 f_2(n)] \equiv ag(n+1) + bg(n)$$
,

montrant que toute combinaison linéaire de solutions est solution, l'ensemble des solutions formant ainsi un espace vectoriel de dimension 2 sur \mathbb{R} (puisque a et b sont réels).

2. Connaissant f(0) et f(1), on en déduit de proche en proche une suite unique :

$$f(2) = af(1) + bf(0)$$
, $f(3) = a[af(1) + bf(0)] + bf(1) = (a^2 + b)f(1) + abf(0)$, etc.,

de sorte que d'une façon générale :

$$f(n) = \alpha_n f(0) + \beta_n f(1)$$
, $\alpha_0 = 1$, $\beta_0 = 0$, $\alpha_1 = 0$, $\beta_1 = 1$.

- 3. Se donnant deux jeux de conditions initiales distincts, $f_i(0)$ et $f_i(1)$, i=1,2, on en déduit deux suites distinctes $f_i(n)$ qui ne sont pas proportionnelles l'une à l'autre et donc sont linéairement indépendantes. Comme montré ci-dessus, toute combinaison linéaire $C_1f_1(n) + C_2f_2(n)$ est aussi solution. Réciproquement, toute solution étant donnée, donc de la forme $f(n) = \alpha_n f(0) + \beta_n f(1)$, on peut définir deux solutions particulières en prenant d'une part f(0) = 1 et f(1) = 0, d'autre part f(0) = 0 et f(1) = 1.
- 4. Avec $f_i(n) = r^n$, $r \in \mathbb{R}$, il vient $r^{n+2} = ar^{n+1} + br^n$; écartant la solution triviale r = 0, les valeurs de r sont les solutions de $r^2 ar b = 0$, soit $r = \frac{1}{2}(a \pm \sqrt{a^2 + 4b})$. La condition sur a et b pour avoir deux solutions distinctes est $a^2 + 4b \neq 0$. En pareil cas, la solution la plus générale de (1.7) est:

$$f(n) = C_1 r_+^n + C_2 r_-^n$$
, $r_{\pm} = \frac{1}{2} (a \pm \sqrt{a^2 + 4b})$.

La solution satisfaisant en outre les conditions ("initiales") f(0) = A et f(1) = B est donc telle que :

$$A = C_1 + C_2$$
, $B = C_1 r_+ + C_2 r_- \iff C_1 = \frac{B - A r_-}{r_+ - r_-}$, $C_2 = \frac{A r_+ - B}{r_+ - r_-}$.

5. Si $a^2 + 4b = 0$, posant $f(n) = r^n \phi(n)$, il vient :

$$r^{n+2}\phi(n+2) = ar^{n+1}\phi(n+1) - \frac{a^2}{4}r^n\phi(n) \Longleftrightarrow r^2\phi(n+2) - ar\phi(n+1) + \frac{a^2}{4}\phi(n) = 0 \ .$$

On a une première solution particulière en prenant $\phi(n) = C^{\text{ste}}$ donnant $r = \frac{a}{2}$ soit $f_1(n) = (\frac{a}{2})^n$. Gardant cette valeur de r, la récurrence ci-dessus à droite s'écrit :

$$\frac{a^2}{4}\phi(n+2) - \frac{a^2}{2}\phi(n+1) + \frac{a^2}{4}\phi(n) = 0 \iff \phi(n+2) = 2\phi(n+1) - \phi(n) ;$$

par inspection (ou en écrivant les premiers termes), on voit que $\phi(n) = n$, d'où une deuxième solution $f_2(n) = n(\frac{a}{2})^n$. La solution générale est dans ce cas de la forme :

$$f(n) = (C_1 + C_2 n)(\frac{a}{2})^n$$
,

les deux constantes étant fixées par les égalités $C_1 = f(0)$ et $(C_1 + C_2)\frac{a}{2} = f(1)$, d'où la solution satisfaisant les deux conditions initiales prescrites :

$$f(n) = \left[f(0) + \left(\frac{2}{a} f(1) - f(0) \right) n \right] \left(\frac{a}{2} \right)^n = (1 - n) f(0) \left(\frac{a}{2} \right)^n + f(1) \left(\frac{a}{2} \right)^{n-1} .$$

igl Remarque

Après avoir étudié la section 11.8 du livre., on pourra ultérieurement faire le lien entre les résultats ci-dessus et la solution de l'équation f'' - af' - bf = 0.

1.6 Opérations sur les matrices

- 1. Trouver la puissance $n^{\rm e}$ de la matrice $\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$
- 2. Soit les deux matrices $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ et $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (a) Trouver la matrice σ_2 hermitique et de trace nulle telle que $[\sigma_1,\,\sigma_2]=2i\sigma_3$.
 - (b) Combien vaut σ_{α}^2 ?
 - (c) Ces matrices ont-elles chacune un inverse ? Si oui, quels sont-ils ?
 - (d) Montrer que $e^{i heta\sigma_{lpha}}$ peut s'écrire comme une combinaison lin'eaire de ${f 1}_2$ et de σ_{lpha} .
- 3. Soit \mathcal{P}_N la matrice $N \times N$ dont tous les éléments sont égaux à 1.
 - (a) Comment s'exprime \mathcal{P}_N^2 en fonction de \mathcal{P}_N ?
 - (b) On pose $P_N = \varpi \mathcal{P}_N$, où $\varpi \in \mathbb{R}$. Comment doit-on choisir ϖ pour que $P_N^2 = P_N$?
 - (c) Quelles sont les valeurs propres de P_N ?
 - (d) Selon le théorème de Cayley Hamilton, quelle équation satisfait la matrice P_N ?
- 4. Soit l'ensemble des matrices $\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]$ où a et b sont des réels, doté des deux LCI addition et multiplication des matrices. Montrer que cet ensemble forme un corps isomorphe à $\mathbb C$; quelle est la matrice associée au nombre i?
- 5. Soit la matrice $\mathcal{R}(\theta) \stackrel{\text{\tiny def}}{=} \left[egin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right]$.

- (a) Possède-t-elle un inverse ? Si oui, le trouver.
- (b) À quoi est égal le produit $\mathcal{R}(\theta)\mathcal{R}(\theta')$?
- (c) Quelle est la signification géométrique de $\mathcal{R}(\theta)$?
- 6. Soit la matrice $M = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Est-elle inversible ? Si oui, trouver son

inverse et généraliser à une dimension quelconque

- 7. Soit M une matrice hermitique de dimension quelconque, dont toutes les valeurs propres μ_k sont réelles et non dégénérées¹, associées aux vecteurs propres $|\mu_k\rangle$.
 - (a) Expliquer pourquoi la série $\sum_{n\in\mathbb{N}}\frac{1}{n!}\mu_k^n$ est convergente.
 - (b) Combien vaut $\sum_{n\in\mathbb{N}}\frac{1}{n!}M^n|\mu_k\rangle$?
 - (c) Les résultats précédents permettent de donner un sens à $\mathcal{E}(z)\stackrel{\mathrm{déf}}{=}\mathrm{e}^{zM}$, où $z\in\mathbb{C}$; montrer que $\mathcal{E}(z+z')=\mathcal{E}(z)\mathcal{E}(z')$.
 - (d) Quel est l'inverse de $\mathcal{E}(z)$?
 - (e) Que peut-on dire de la matrice $\mathcal{E}(\mathrm{i}t)$ quand $t \in \mathbb{R}$?
 - (f) En déduire que $[\mathcal{E}(\mathrm{i}t)]^{\dagger} = \mathcal{E}(-\mathrm{i}t)$.
 - (g) Soit H une matrice de dimension finie et $R(z)\stackrel{\mathrm{def}}{=} \sum_{n\in\mathbb{N}} z^{-(n+1)} H^n$, où $z\in\mathbb{C}$. On note E_p les valeurs propres de H.
 - i. Pour quelles valeurs de z la série est-elle convergente ?
 - ii. Lorsque c'est le cas, écrire l'expression ramassée de $R(z). \label{eq:constraint}$

1. Les premières puissances de la matrice $M \stackrel{\text{déf}}{=} \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$ sont :

$$M^{2} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} , \quad M^{3} = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} , \quad M^{4} = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} , \quad (1.8)$$

qui permettent au passage d'illustrer le théorème de Cayley - Hamilton. En effet, l'équation caractéristique de M est $(1-\lambda)^3=0$, d'où $M^3-3M^2+3M-\mathbf{1}_3=0$; on a bien :

$$\left[\begin{array}{ccc} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right] - 3 \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] + 3 \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] - \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] = 0 \ .$$

¹Cette dernière propriété n'est pas essentielle, mais adoptée pour la simplicité.

M ayant un déterminant non nul (il est égal à 1), son inverse existe ; selon le même théorème, on a :

$$M^{-1} = M^2 - 3M + 3\mathbf{1}_3 \quad \Longleftrightarrow \quad M^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} + 3\mathbf{1}_3 \ ,$$

soit:

$$M^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} . \tag{1.9}$$

Les premières puissances de M suggèrent que les éléments de M^n sont de la forme $(M^n)_{12} = (M^n)_{23} = n$, $(M^n)_{13} = \frac{1}{2}n(n-1)$, les autres éléments étant identiques à ceux de M. Prenant ceci comme hypothèse, on peut alors écrire :

$$(M^{n+1})_{12} = \sum_{j=1}^{3} (M^n)_{1j} M_{j2} = 1 \times 1 + n \times 1 + 0 \times 0 = n+1$$
,

$$(M^{n+1})_{13} = \sum_{j=1}^{3} (M^n)_{1j} M_{j3} = 1 \times 0 + n \times 1 + \frac{1}{2} n(n-1) \times 1 = n + \frac{n(n-1)}{2} = \frac{(n+1)n}{2} ,$$

égalités qui reproduisent au rang suivant les mêmes formes pour les éléments de matrice. Noter que les éléments de matrice traduisent l'égalité $C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$ à l'origine du triangle de Pascal (avec p = 0, 1), d'où l'apparition des coefficients du binôme C_n^0 et C_n^1 .

En définitive :

$$M^n = \begin{bmatrix} 1 & n & \frac{1}{2}n(n-1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix} .$$

Ce résultat se prête à l'illustration d'opérations formelles de routine ; par exemple, soit à définir l'exponentielle e^{zM} où z est un scalaire, que l'on pose naturellement égale à $\sum_{n\in\mathbb{N}}\frac{z^n}{n!}M^n$, et est donc la matrice :

$$\mathbf{e}^{zM} = \left[\begin{array}{ccc} \sum_{n \in \mathbb{N}} \frac{z^n}{n!} & \sum_{n \in \mathbb{N}} n \frac{z^n}{n!} & \sum_{n \in \mathbb{N}} \frac{1}{2} n (n-1) \frac{z^n}{n!} \\ 0 & \sum_{n \in \mathbb{N}} \frac{z^n}{n!} & \sum_{n \in \mathbb{N}} n \frac{z^n}{n!} \\ 0 & 0 & \sum_{n \in \mathbb{N}} \frac{z^n}{n!} \end{array} \right] ,$$

on reconnaît les développements de e^z , $z e^z$ et $\frac{1}{2}z^2 e^z$ d'où :

$$e^{zM} = \begin{bmatrix} e^z & z e^z & \frac{1}{2}z^2 e^z \\ 0 & e^z & z e^z \\ 0 & 0 & e^z \end{bmatrix} = e^z \begin{bmatrix} 1 & z & \frac{1}{2}z^2 \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} .$$
 (1.10)

Rappelons que, une matrice carrée M de dimension N étant donnée ainsi qu'une fonction f possédant un développement en série entière, le théorème de Cayley -

Hamilton permet d'écrire la matrice f(M) sous la forme d'un polynôme en M de degré N-1; le calcul précédent illustre ce fait, puisque pour la matrice 3×3 M, et pour la fonction exponentielle $f(Z) \stackrel{\text{def}}{=} e^Z$, on a selon (1.8) et (1.10) avec z=1:

$$f(M) \equiv e^M = e\mathbf{1}_3 + eM + \frac{e}{2}M^2$$

et plus généralement :

$$e^{zM} = e^z \mathbf{1}_3 + z e^z M + \frac{1}{2} z^2 e^z M^2$$
.

Un autre exemple de manipulation formelle est le suivant. La matrice M s'écrit aussi :

$$M = \mathbf{1}_3 + X$$
, $X \stackrel{\text{def}}{=} \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}
ight]$;

on voit immédiatement que X^2 a un seul élément non nul, tout à fait en haut à droite et égal à 1, et que $X^3=0$ (le polynôme caractéristique de X est $\lambda^3=0$). Soit maintenant à trouver l'inverse de M en écrivant $M^{-1}=(1+X)^{-1}$; en utilisant le développement formel de la série géométrique, on a :

$$M^{-1} = \sum_{n \in \mathbb{N}} (-1)^n X^n = \mathbf{1}_3 - X + X^2 + 0 ,$$

la deuxième égalité venant de $X^{3+k} = 0$ si $k \in \mathbb{N}$; on retrouve bien ainsi M^{-1} obtenu autrement en (1.9), et aussi l'égalité formelle entre matrices pour la dimension 3:

$$\frac{1}{\mathbf{1}_3 + X} = \mathbf{1}_3 - X + X^2 \ ,$$

qui se généralise immédiatement dans un espace vectoriel de dimension ${\cal N}$:

$$\boxed{\frac{1}{\mathbf{1}_N + X} = \sum_{n=0}^{N-1} (-1)^n X^n , \qquad X^0 \stackrel{\text{def}}{=} \mathbf{1}_N} ,$$

- 2. Soit les deux matrices $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ et $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (a) La matrice $\sigma_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ telle que $[\sigma_1, \sigma_2] = 2i\sigma_3$ satisfait l'égalité :

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] - \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 2\mathbf{i} & 0 \\ 0 & -2\mathbf{i} \end{array}\right] \ ,$$

soit:

$$\left[\begin{array}{cc} c-b & d-a \\ a-d & b-c \end{array}\right] = \left[\begin{array}{cc} 2\mathbf{i} & 0 \\ 0 & -2\mathbf{i} \end{array}\right] \quad \Longleftrightarrow \quad c-b=2\mathbf{i} \ , \quad a=d \ .$$

La matrice σ_2 est donc de la forme $\begin{bmatrix} a & b \\ b+2\mathbf{i} & a \end{bmatrix}$. Elle est de trace nulle si

$$2a = 0$$
 et hermitique si $b^* = b + 2i$, d'où $a = 0$ et $b = -i$: $\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$.

- (b) On note immédiatement que $\sigma_{\alpha}^2 = \mathbf{1}_2$, quel que soit α . Ceci peut aussi se voir en invoquant le théorème de Cayley Hamilton, l'équation caractéristique (commune aux trois σ_{α}) étant $\lambda^2 1 = 0$.
- (c) Le déterminant des σ_{α} vaut -1; étant différent de zéro, chaque σ_{α} a un inverse. En multipliant l'égalité $\sigma_{\alpha}^2 = \mathbf{1}_2$ à gauche (ou à droite, au choix) par σ_{α}^{-1} , on obtient $\sigma_{\alpha}^{-1}\sigma_{\alpha}^2 = \sigma_{\alpha}^{-1}$, soit $\sigma_{\alpha} = \sigma_{\alpha}^{-1}$: chaque σ_{α} est égale à son propre inverse.

On remarque que si l'on se propose de trouver les matrices hermitiques 2×2 satisfaisant $\sigma^2=\mathbf{1}_2$, on vient d'en trouver déjà 4: les trois σ_α et $\mathbf{1}_2$. Mais il en existe en fait une infinité d'autres, obtenues selon $P\sigma_\alpha P^{-1}$ où P est une matrice de changement de base. Ainsi, comparée à l'équation scalaire $z^2=1$, qui n'a que les deux solutions $z=\pm 1$, l'équation matricielle minimale (espace vectoriel de dimension 2!) analogue possède déjà une infinité de solutions. Ceci lève le voile sur l'extrême richesse de l'algèbre des matrices, résultant principalement de la non-commutativité du produit.

(d) Le symbole $e^{i\theta\sigma_{\alpha}}$ est un raccourci d'écriture pour la série entière $\sum_{n\in\mathbb{N}}\frac{(i\theta)^n}{n!}\sigma_{\alpha}^n$. p étant entier dans \mathbb{N} (et même dans \mathbb{Z}), on a $\sigma^{2p}=\mathbf{1}_2$ et $\sigma_{\alpha}^{2p+1}=\sigma_{\alpha}$; la série entière ci-dessus converge uniformément dans le plan \mathbb{C} puisque σ_{α} est une matrice de dimension finie (ses valeurs propres sont donc finies, en fait elles valent ± 1): on peut donc grouper les termes comme on veut. En rassemblant les termes pairs, on obtient la série de Taylor du cosinus, tous en facteur de $\mathbf{1}_2$; les termes impairs, en facteur de $i\sigma_{\alpha}$, reconstituent celui du sinus. Au total:

$$e^{i\theta\sigma_{\alpha}} = \cos\theta \mathbf{1}_2 + i\sin\theta\,\sigma_{\alpha}$$

qui est une formule d'Euler généralisée, rencontrée en théorie quantique dès qu'il s'agit d'un spin $\frac{1}{2}$, réel ou fictif. L'exponentielle est bien une combinaison linéaire de $\mathbf{1}_2$ et de σ_{α} , que l'on peut à nouveau considérer comme une simple conséquence du théorème de Cayley - Hamilton, toutes les puissances supérieures ou égales à 2 s'exprimant en fonction de $\mathbf{1}_2$ ou σ_{α} .

On aura remarqué que les matrices $\mathbf{1}_2$ et les σ_{α} obéissent à une algèbre identiques à celles des quaternions (voir problème 15.7).

3. (a) Si \mathcal{P}_N est la matrice $N \times N$ dont tous les éléments sont égaux à 1, les éléments de matrice de \mathcal{P}^2_N sont :

$$(\mathcal{P}_{N}^{2})_{ij} = \sum_{k=1}^{N} (\mathcal{P}_{N})_{ik} (\mathcal{P}_{N})_{kj} = N$$
,

étant eux aussi tous égaux entre eux, comme ceux de \mathcal{P}_N , on peut écrire :

$$\mathcal{P}_N^2 = N\mathcal{P}_N$$

- (b) Posant $P_N = \varpi \mathcal{P}_N$, $\varpi \in \mathbb{R}$, on a $P_N^2 = \varpi^2 \mathcal{P}_N^2 = \varpi^2 N \mathcal{P}_N = \varpi N P_N$. Pour avoir $P_N^2 = P_N$, il faut prendre $\varpi = \frac{1}{N}$; alors, P_N est idempotent : l'élever à une puissance (entière) quelconque ne lui fait rien ; comme appliquer P_N une deuxième fois ne fait rien de plus, il est naturel de dire, par analogie avec la géométrie élémentaire, que cet opérateur est un projecteur.
- (c) En raison de l'égalité $P_N^2 = P_N$, les valeurs propres de P_N ne peuvent être que 0 ou 1 (toujours Cayley Hamilton !). D'une autre façon, il suffit de raisonner avec les vecteurs propres, qui peuvent former une base (P_N est diagonalisable en tant que matrice symétrique) ; soit $|\lambda\rangle$ un vecteur propre associé à la valeur propre λ :

$$P_N|\lambda\rangle = \lambda|\lambda\rangle \Longrightarrow P_N^2|\lambda\rangle = \lambda^2|\lambda\rangle$$

mais comme $P_N^2 = P_N$, on a $\lambda^2 = \lambda$, d'où les deux seules possibilités $\lambda = 0, 1$. La valeur propre 0 est dégénérée N-1 fois, et on peut lui associer N-1 vecteurs propres linéairement indépendants $|0_k\rangle$.

Revenant à la notion de projecteur, on voit que le vecteur propre $|1\rangle$ engendre le sous-espace (unidimensionnel) sur lequel P_N projette tout vecteur, les N-1 autres vecteurs propres $|0_k\rangle$ étant une base pour son complément orthogonal ; un projecteur de ce dernier est l'opérateur $Q_N \stackrel{\text{déf}}{=} \mathbf{1}_N - P_N$ puisque $Q_N|1\rangle = 0$ et que $Q_N|0_k\rangle = |0_k\rangle$ quel que soit k.

- (d) Selon le théorème de Cayley Hamilton, la matrice P_N satisfait $P_N^2 P_N = 0$, qui n'est rien d'autre que l'égalité caractéristique traduisant l'idempotence.
- 4. Soit $M_{a,b} \stackrel{\text{def}}{=} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, avec a et b réels. La stabilité de l'addition est trivialement assurée :

$$M_{a,\,b} + M_{a',\,b'} = \begin{bmatrix} (a+a') & -(b+b') \\ (b+b') & (a+a') \end{bmatrix} \equiv M_{a+a',\,b+b'} ;$$

en ce qui concerne celle de la multiplication, elle s'écrit :

$$M_{a,b}M_{a',b'} = \begin{bmatrix} aa' - bb' & -ab' - ba' \\ ba' + ab' & -bb' + aa' \end{bmatrix} \equiv M_{aa'-bb',ab'+ba'}.$$

Dans les deux relations reliant les couples (a, b) et (a', b') pour l'addition et la multiplication des matrices, on reconnaît l'addition et la multiplication des complexes :

$$z \stackrel{\text{\tiny def}}{=} a + \mathrm{i}b \,, \ z' \stackrel{\text{\tiny def}}{=} a' + \mathrm{i}b' \iff z + z' = (a + a') + \mathrm{i}(b + b') \,, \ z' = (aa' - bb') + \mathrm{i}(ab' + ba') \ ,$$

d'où l'isomorphisme entre le corps des $M_{a,b}$ et le corps $\mathbb C$ des complexes, puisqu'il existe d'une part une correspondance biunivoque entre les éléments des deux ensembles et que, d'autre part, les opérations effectuées dans l'un de ceux-ci est le fidèle reflet des opérations effectuées dans l'autre – et réciproquement.

De toute évidence, la matrice en correspondance avec i est $M_{0,1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$; son carré est $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \equiv M_{-1,0} = -\mathbf{1}_2$, en traduction fidèle de l'égalité $\mathbf{i}^2 = -1$.

5. (a) La matrice $\mathcal{R}(\theta) \stackrel{\text{def}}{=} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ a pour déterminant 1 : celui-ci étant non-nul, elle est régulière. Par la méthode standard (matrice transposée des cofacteurs), on trouve sans peine :

$$\mathcal{R}^{-1}(\theta) \stackrel{\text{def}}{=} \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right] ;$$

on observe que $\mathcal{R}^{-1}(\theta) = \mathcal{R}(-\theta)$.

(b) Par le produit matriciel, le produit $\mathcal{R}(\theta)\mathcal{R}(\theta')$ est :

$$\left[\begin{array}{cc} \cos\theta\cos\theta' - \sin\theta\sin\theta' & \cos\theta\sin\theta'\sin\theta\cos\theta' \\ -\sin\theta\cos\theta' - \cos\theta\sin\theta' & -\sin\theta\sin\theta' + \cos\theta\cos\theta' \end{array} \right] \,,$$

où l'on reconnaît les lignes trigonométriques de $\theta + \theta'$, d'où :

$$\begin{bmatrix} \cos(\theta + \theta') & \sin(\theta + \theta') \\ -\sin(\theta + \theta') & \cos(\theta + \theta') \end{bmatrix} \iff \mathcal{R}(\theta)\mathcal{R}(\theta') = \mathcal{R}(\theta + \theta').$$

- (c) $\mathcal{R}(\theta)$ est la matrice reliant les composantes de deux vecteurs du plan \mathbb{R}^2 se transformant l'un dans l'autre par une rotation de l'angle θ .
- 6. La matrice M est inversible puisque son déterminant est non nul il vaut 1 (la matrice étant triangulaire, c'est juste le produit des éléments diagonaux). En appliquant la règle de calcul de l'inverse, on trouve :

$$M^{-1} = \begin{bmatrix} 1 & a & a^2 & a^3 \\ 0 & 1 & a & a^2 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix} , \qquad (1.11)$$

que l'on peut aussi obtenir par des manipulations élémentaires en partant du théorème de Cayley - Hamilton, lequel s'écrit ici :

$$M^4 - 4M^3 + 6M^2 - 4M + \mathbf{1}_4 = 0 \iff M^{-1} = -M^3 + 4M^2 - 6M + 4\mathbf{1}_4$$

puisque, la matrice étant triangulaire, $\det(M - \lambda \mathbf{1}_4) = (1 - \lambda)^4$. Pour une matrice de dimension N quelconque, on écrit $M_{ij} = \delta_{ij} - a\delta_{ij-1}$, avec $1 \leq i, j \leq N$, et on cherche à vérifier que :

$$(M^{-1})_{kl} = \begin{cases} a^{l-k} & k \le l \\ 0 & k > l \end{cases}$$
 (1.12)

est effectivement la matrice inverse. On a :

$$(MM^{-1})_{ij} = \sum_{k=1}^{j} (\delta_{ik} - a\delta_{ik-1})a^{j-k} = \sum_{k=1}^{j} \delta_{ik}a^{j-k} - \sum_{k=1}^{j} \delta_{ik-1}a^{j-k+1}$$

La seconde somme s'écrit $\sum_{k'=0}^{j-1} \delta_{ik'} a^{j-k'}$: elle est nulle si i+1>j et vaut a^{j-i} si $i+1\leq j$; de surcroît, le terme k'=0 est toujours nul puisque $i\geq 1$. Il vient ainsi:

$$(MM^{-1})_{ij} = \sum_{k=1}^{j} \delta_{ik} a^{j-k} - \sum_{k'=1}^{j-1} \delta_{ik'} a^{j-k'}$$
.

Chapitre 1 Algèbre linéaire

Seul le terme k=j de la première somme survit à la différence des deux sommes, donnant $(MM^{-1})_{ij} = \delta_{ij}$, comme escompté. Ce résultat peut aussi s'obtenir moins laborieusement en écrivant $M = \mathbf{1}_4 - aX$ avec :

et $X^{4+k}=0$ si $k\in\mathbb{N}$. En développant formellement en série géométrique :

$$M^{-1} = \frac{1}{\mathbf{1}_4 - aX} = \sum_{n \in \mathbb{N}} (aX)^n = \mathbf{1}_4 + aX + a^2X^2 + a^3X^3 ,$$

procédé qui redonne (1.11), mais beaucoup plus vite. Pour une dimension quelconque N, on a toujours $M = \mathbf{1}_N - aX$, X de même structure que ci-dessus, et avec cette fois $X^{N+k} = 0$, $k \in \mathbb{N}$, d'où immédiatement :

$$M^{-1} = \mathbf{1}_N + \sum_{q=1}^{N-1} a^q X^q$$

obtenant ainsi plus élégamment la généralisation du résultat (1.11).

- 7. (a) La série $\sum_{n\in\mathbb{N}}\frac{1}{n!}\mu_k^n$ est le développement en série entière de l'exponentielle e^{μ_k} , qui est convergente $\forall\,\mu_k\in\mathbb{C}$.
 - (b) Toutes les valeurs propres de M étant finies, la somme $\sum_{n\in\mathbb{N}}\frac{1}{n!}M^n$ est une matrice notée e^M dont les valeurs propres sont les e^{μ_k} , et les vecteurs propres ceux de M; en conséquence, utilisant la notation de Dirac [9] et notant $|\mu_k\rangle$ les vecteurs propres normalisés à l'unité, la décomposition spectrale de e^M s'écrit:

$$e^M = \sum_k |\mu_k\rangle e^{\mu_k} \langle \mu_k|$$
.

(c) Cela fait, la matrice $\mathcal{E}(z)\stackrel{\text{def}}{=} \mathrm{e}^{zM}$, où $z\in\mathbb{C}$, est bien définie ; on a d'une part :

$$\mathcal{E}(z+z') = \sum_{k} |\mu_k\rangle e^{\mu_k(z+z')} \langle \mu_k| ,$$

d'autre part:

$$\mathcal{E}(z)\mathcal{E}(z') = \sum_{k,k'} |\mu_k\rangle e^{\mu_k z} \langle \mu_k | \mu_{k'} \rangle e^{\mu_{k'} z'} \langle \mu_{k'} | .$$

La matrice M étant hermitique, ses vecteurs propres sont orthogonaux, d'où $\langle \mu_k | \mu_{k'} \rangle = \delta_{kk'}$ et en conséquence :

$$\mathcal{E}(z)\mathcal{E}(z') = \sum_{k} |\mu_k\rangle e^{\mu_k z} e^{\mu_k z'} \langle \mu_k| = \mathcal{E}(z+z') .$$

(d) L'inverse de $\mathcal{E}(z)$ est la matrice ayant les mêmes vecteurs propres et les valeurs propres $\frac{1}{e^{\mu_k z}} = e^{-\mu_k z}$:

$$(\mathcal{E}(z))^{-1} \equiv (e^{Mz})^{-1} = \sum_{k} |\mu_k\rangle e^{-\mu_k z} \langle \mu_k| \equiv e^{-Mz} , \qquad (1.13)$$

- (e) Les valeurs propres de $\mathcal{E}(it)$ sont les nombres $e^{it\mu_k}$ qui, t étant réel, sont tous de module unité : $\mathcal{E}(it)$ est donc une matrice unitaire.
- (f) On déduit que $[\mathcal{E}(it)]^{\dagger} = (\mathcal{E}(it))^{-1}$, qui vaut donc $\mathcal{E}(-it)$ selon (1.13).
- (g) i. On a $R(z) = \frac{1}{z} \sum_{n \in \mathbb{N}} \left(\frac{H}{z}\right)^n$; la série géométrique $S(Z) \stackrel{\text{def}}{=} \sum_{n \in \mathbb{N}} Z^n$ converge ssi |Z| < 1, ce qui impose ici $|z| > \max |E_p|$, soit à l'extérieur du disque dont le rayon est égal au module de la plus grande valeur propre en module.
 - ii. On sait que $S(Z)=\frac{1}{1-Z}$ quand |Z|<1, de sorte que :

$$\forall z, |z| > \max |E_p| : R(z) = \frac{1}{z} \frac{1}{1 - \frac{H}{z}} = \frac{1}{z \mathbf{1} - H} .$$

Dans le langage de la théorie quantique où la matrice H est une représentation du Hamiltonien, R(z) s'appelle $r\acute{e}solvante$ et joue un rôle de premier plan pour l'évolution temporelle d'un système ou la détermination de sa densité d'état [10].

1.7 Diagonalisation

- 1. Soit la matrice $M_3 = \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$
 - (a) Trouver tous ses vecteurs propres. Cette matrice est-elle diagonalisable ?
 - (b) Généraliser ces résultats à la matrice M_N de dimension quelconque.
- 2. Soit une application linéaire H dans un espace vectoriel de dimension N, dont la matrice sur la base orthonormée $\{|e_n\rangle\}_n$ est la matrice \mathcal{H} , dont les seuls éléments non nuls sont ceux situés juste au-dessus et au-dessous de la diagonale principale, et aux extrémités de l'"anti-diagonale", tous égaux à $v\in\mathbb{R}$:

$$\mathcal{H} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & v & 0 & \dots & 0 & v \\ v & 0 & v & \ddots & \dots & 0 \\ 0 & v & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & v & 0 \\ 0 & \vdots & \ddots & v & 0 & v \\ v & 0 & \dots & 0 & v & 0 \end{bmatrix}$$

- (a) Cette matrice est-elle diagonalisable ?
- (b) Soit R l'application linéaire dont l'écriture à $la\ Dirac\ {\rm est}\ \sum_{n=1}^N |e_{n+1}\rangle\langle e_n|$, avec la convention d'écriture $|e_{N+1}\rangle\equiv|e_1\rangle$; écrire H à l'aide de R et de son adjointe R^\dagger .
- (c) Déterminer les puissances successives de R ; en particulier, combien vaut \mathbb{R}^N ?
- (d) Compte tenu de ce dernier résultat, quelles sont les valeurs propres de R ?
- (e) Soit r_k l'une quelconque des valeurs propres de R; montrer que le vecteur défini comme $|\psi_k\rangle\stackrel{\text{def}}{=} \sum_{n=1}^N r_k^n |e_n\rangle$ est propre de H et préciser la valeur propre correspondante.
- (f) Normaliser les vecteurs propres à l'unité, et écrire U, matrice de passage des $\{|e_n\rangle\}_n$ aux $\{|\psi_k\rangle\}_k$. Quelle est la matrice U^{-1} ?

1. (a) Les valeurs propres de M_3 sont les zéros du déterminant :

$$D_3(\lambda) \stackrel{\text{def}}{=} \left| \begin{array}{ccc} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & -\lambda \end{array} \right|$$

qui, en raison de sa forme triangulaire, est égal au produit des éléments diagonaux : $D_3(\lambda) = -\lambda^3$. Il y a donc une valeur propre $\lambda = 0$, trois fois dégénérée.

(b) x, y et z étant les composantes des vecteurs propres, elles doivent satisfaire le système :

$$0 \times x + 1 \times y + 0 \times z = 0$$
, $0 \times x + 0 \times y + 1 \times z = 0$, $0 \times x + 0 \times y + 0 \times z = 0$,

étant entendu que ces trois équations ne sont pas linéairement indépendantes puisqu'elles incorporent le choix de λ annulant le déterminant $D_3(\lambda)$. On en tire y=0 et z=0, x étant indéterminé ; s'agissant de trouver des vecteurs propres linéairement indépendants, il existe donc une seule solution, le vecteur de composantes (1,0,0), à un facteur près. L'espace vectoriel étant de dimension 3, toute base est constituée de trois vecteurs : comme il n'existe qu'un vecteur propre, la matrice M_3 n'est pas diagonalisable, par définition.

- (c) Pour une matrice M_N de dimension quelconque, on a $D_N(\lambda) = (-\lambda)^N$; de toute évidence, aucun des résultats ci-dessus n'est modifié : l'unique valeur propre $\lambda = 0$ est dégénérée N fois et le seul vecteur propre est (1, 0, 0, ..., 0).
- 2. (a) Étant symétrique réelle, la matrice \mathcal{H} est diagonalisable.
 - (b) On a immédiatement $H = v(R + R^{\dagger}) = v \sum_{n=1}^{N} (|e_{n+1}\rangle \langle e_n| + |e_n\rangle \langle e_{n+1}|).$
 - (c) Le carré de R est :

$$R^{2} = \sum_{n=1}^{N} \sum_{m=1}^{N} |e_{n+1}\rangle\langle e_{n}|e_{m+1}\rangle\langle e_{m}| = \sum_{n=1}^{N} |e_{n+1}\rangle\langle e_{n-1}|$$

la seconde égalité venant de $\langle e_n|e_{m+1}\rangle = \delta_{nm+1}$. Avec la convention d'écriture adoptée, $|e_{N+n}\rangle = |e_n\rangle$, toutes les égalités entre indices doivent être entendues² modulo N; avec k < l les seuls éléments non nuls de la matrice représentant l'application R^2 , $(\mathcal{R}^2)_{kl}$, sont ceux tels que k=l-2; pour le triangle inférieur, k>l, les seuls éléments $(\mathcal{R}^2)_{kl}$ non nuls sont ceux pour lesquels k=l-2+N. Au total, les seuls éléments non nuls sont ceux dont la différence des indices est, en valeur absolue, égale à 2 modulo N, soit |k-l|=2 (N).

L'argument est le même pour les éléments $(\mathcal{R}^n)_{kl}$:

$$(\mathcal{R}^n)_{kl} = \delta_{|k-l| \, n \, (N)} .$$

De façon imagée, le passage de \mathbb{R}^n à \mathbb{R}^{n+1} se traduit par une montée d'un étage de la ligne à 45° des éléments non nuls situés dans les triangles supérieur et inférieur. Lorsque l'on arrive à la puissance N, tous les éléments non nuls sont sur la diagonale principale et valent 1, d'où l'égalité $\mathbb{R}^N = \mathbf{1}_N$.

(d) Les valeurs propres de R sont celles de sa matrice représentative \mathcal{R} ; comme $\mathcal{R}^N = \mathbf{1}_N$, le théorème de Cayley - Hamilton dit que l'équation caractéristique de \mathcal{R} est $r^N = 1$: les valeurs propres sont donc les N racines N^{es} de l'unité:

$$r_k = e^{ik\frac{2\pi}{N}} \equiv e^{ik\theta} \ , \quad \theta = \frac{2\pi}{N} \ , \ k = 1, 2, ..., N \ .$$

Elles sont toutes distinctes, $r_k \neq r_{k'}$ si $k \neq k'$: il n'y a donc pas dégénérescence.

(e) On a:

$$H|\psi_k\rangle = v(R+R^{\dagger})|\psi_k\rangle = v\sum_{n=1}^N \sum_{m=1}^N r_k^m(|e_{n+1}\rangle\langle e_n| + |e_n\rangle\langle e_{n+1}|)|e_m\rangle ;$$

compte tenu de l'orthonormalisation de la base $\{|e_n\rangle\}$, il vient :

$$H|\psi_k\rangle = v \sum_{n=1}^{N} \sum_{m=1}^{N} r_k^m (|e_{n+1}\rangle \delta_{nm} + |e_n\rangle \delta_{n+1m}) = v \sum_{n=1}^{N} (r_k^n |e_{n+1}\rangle + r_k^{n+1} |e_n\rangle) ;$$

en faisant glisser d'un cran vers le bas l'indice muet de la première somme (et en jouant toujours implicitement avec $N+1=1\,(N)$), il vient :

$$H|\psi_k\rangle = v \sum_{n=1}^{N} (r_k^{n-1} + r_k^{n+1})|e_n\rangle) = 2v(r_k + \frac{1}{r_k}) \sum_{n=1}^{N} r_k^n |e_n\rangle$$
,

d'où finalement $H|\psi_k\rangle=2v\cos k\theta|\psi_k\rangle$; $|\psi_k\rangle$ est bien propre de H, la valeur propre étant $2v\cos k\frac{2\pi}{N}$.

(f) La base étant orthonormalisée, le carré de la norme de tout vecteur est la somme des modules carrés de ses composantes ; pour $|\psi_k\rangle$, introduisant en

²On peut se représenter la situation en imaginant N points régulièrement répartis sur un cercle.

facteur la constante de normalisation $\mathcal{N},$ la normalisation à l'unité s'exprime comme :

$$|\mathcal{N}|^2 \sum_{n=1}^N |r_k^n|^2 = 1 \quad \Longleftrightarrow \quad |\mathcal{N}|^2 N = 1 ,$$

puisque tous les r_k sont de module unité. Les vecteurs propres normalisés sont donc :

$$\psi_k = \frac{e^{i\alpha}}{\sqrt{N}} \sum_{n=1}^{N} e^{ink\theta} |e_n\rangle$$

où α est une phase arbitraire. On sait que les $|\psi_k\rangle$ sont orthogonaux en tant que vecteurs propres d'une matrice symétrique³ dépourvue de dégénérescence ; ceci se vérifie facilement :

$$(|\psi_k\rangle, |\psi_{k'}\rangle) = \frac{1}{N} \sum_{n=1}^{N} (e^{ikn\theta})^* e^{ik'n\theta} = \frac{1}{N} \sum_{n=1}^{N} e^{i(k'-k)n\theta} ;$$

avec $k \neq k'$, la somme géométrique de droite vaut $e^{i(k'-k)\theta} \frac{1-e^{i(k'-k)N\theta}}{1-e^{i(k'-k)\theta}}$, fraction dont le numérateur est nul puisque k et k' sont entiers et que $N\theta=2\pi$.

U étant la matrice de passage $\{|e_n\rangle\}_n \to \{|\psi_k\rangle\}_k$, on a $|\psi_k\rangle = \sum_n U_{nk}|e_n\rangle$; multipliant cette égalité à gauche par $\langle e_m|$, il vient $\langle e_m|\psi_k\rangle = \sum_n U_{nk}\delta_{mn} = U_{mk}$, égalité que l'on lit à l'envers pour en déduire :

$$U_{mk} = \langle e_m | \psi_k \rangle = \frac{1}{\sqrt{N}} e^{imk\theta}$$

U est une transformation unitaire ; la base étant orthonormée, la matrice inverse s'obtient en transposant et en conjuguant la matrice de U:

$$(U^{-1})_{km} = (U_{mk})^* = \frac{1}{\sqrt{N}} e^{-imk\theta}$$
.

Il est aisé de vérifier (en sommant les progressions géométriques) que :

$$\sum_{m=1}^{N} (U^{-1})_{km} U_{mk'} = \delta_{kk'} ,$$

comme il se doit.

1.8 Changement de base

1. (a) L'espace \mathbb{R}^3 est rapporté à un repère orthonormé $\mathrm{O} xyz$ défini par les trois vecteurs orthonormalisés $(\vec{i},\vec{j},\vec{k})$; soit $\mathrm{O} XYZ$, $(\vec{I},\vec{J},\vec{K})$, le repère obtenu du précédent par rotation d'un angle θ autour de l'axe $\mathrm{O} x$. Exprimer les composantes X, Y et Z d'un vecteur quelconque en fonction de ses composantes sur $\mathrm{O} xyz$.

³ou plus généralement hermitique.

- (b) Reprendre la question précédente quand le nouveau repère se déduit de Oxyz par une rotation de θ autour d'un axe situé dans le plan xOy et faisant l'angle ϕ avec Ox.
- 2. Soit \vec{a}_i , $i=1,\,2,\,3$ une base quelconque de \mathbb{R}^3 , $g_{ij}\stackrel{\text{def}}{=} \vec{a}_i.\vec{a}_j$. On définit trois autres vecteurs $\vec{b}_1 = \frac{\vec{a}_2 \times \vec{a}_3}{(\vec{a}_1,\,\vec{a}_2,\,\vec{a}_3)}$, etc., où $(\vec{a}_1,\,\vec{a}_2,\,\vec{a}_3)\stackrel{\text{def}}{=} \vec{a}_1.(\vec{a}_2 \times \vec{a}_3)$ désigne le produit mixte.
 - (a) À quoi sont égaux les produits scalaires $\vec{a}_i \cdot \vec{b}_i$?
 - (b) Soit $\vec{r}=\sum_i \nu_i \vec{a}_i$ et $\vec{k}=\sum_j \mu_j \vec{b}_j$; exprimer le produit scalaire $\vec{k}.\vec{r}$ à l'aide des ν_i et des μ_j .
 - (c) Avec $\vec{R} = \sum_i n_i \vec{a}_i$ où $n_i \in \mathbb{Z}$, à quelle condition sur \vec{k} a-t-on $e^{i\vec{k}.\vec{R}} = 1$ quel que soit \vec{R} de cette forme ?
 - (d) Soit x_i et ξ_j les composantes d'un même vecteur sur les deux bases \vec{a}_i et \vec{b}_j respectivement ; former la matrice de passage d'une base à l'autre et trouver son inverse.
- 3. Soit, dans \mathbb{R}^3 , la matrice $M_{\mathrm{O}u,\,\theta}$ donnant les composantes d'un vecteur transformé par la rotation d'angle θ autour de l'axe $\mathrm{O}u$.
 - (a) Former les matrices $M_{Ox, \theta}$ et $M_{Oz, \theta'}$.
 - (b) Calculer les deux produits $M_{Ox,\theta}M_{Oz,\theta'}$ et $M_{Oz,\theta'}M_{Ox,\theta}$. Que constate-t-on ?
 - (c) Interpréter géométriquement le fait que le commutateur $[M_{{\rm O}x,\,\theta},\,M_{{\rm O}z,\,\theta'}]$ n'est pas nul.
 - (d) Qu'en est-il pour deux rotations quelconques autour du $m\hat{e}me$ axe ?
- 4. Calculer l'inverse de $M_{Ou,\theta}$.

1. (a) On a évidemment $\vec{I} = \vec{i}$, puisque \vec{i} est invariant dans une rotation autour de Ox; \vec{J} a pour composantes $(0, \cos \theta, \sin \theta)$ sur $(\vec{i}, \vec{j}, \vec{k})$, celles de \vec{K} (qui lui est orthogonal, $\theta \rightarrow \theta + \frac{\pi}{2}$) étant $(0, -\sin \theta, \cos \theta)$.

Décomposé sur la base $(\vec{I}, \vec{J}, \vec{K})$, un vecteur \vec{M} de composantes X, Y et Z a pour expression $\vec{M} = X\vec{I} + Y\vec{J} + Z\vec{K}$; remplaçant $(\vec{I}, \vec{J}, \vec{K})$ par leurs décompositions sur $(\vec{i}, \vec{j}, \vec{k})$, il vient :

$$\vec{M} = X\vec{i} + Y(\cos\theta\vec{j} + \sin\theta\vec{k}) + Z(-\sin\theta\vec{j} + \cos\theta\vec{k})$$
.

Ce même vecteur \vec{M} s'écrit aussi $x\vec{i}+y\vec{j}+z\vec{k}$ d'où :

$$X\vec{i} + Y(\cos\theta\vec{j} + \sin\theta\vec{k}) + Z(-\sin\theta\vec{j} + \cos\theta\vec{k}) = x\vec{i} + y\vec{j} + z\vec{k} \ .$$

L'égalité de deux vecteurs est équivalente à l'égalité de leurs composantes deux à deux, d'où :

$$X = x$$
, $Y \cos \theta - Z \sin \theta = y$, $Y \sin \theta + Z \cos \theta = z$;

ce système linéaire s'inverse facilement pour donner :

$$X = x$$
, $Y = y\cos\theta + z\sin\theta$, $Z = -y\sin\theta + z\cos\theta$,

que l'on peut exprimer sous forme matricielle :

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \stackrel{\text{def}}{=} \mathcal{R}_x(\theta) .$$

(b) L'axe de la rotation d'angle θ peut être considéré comme le transformé de l'axe Ox par une rotation d'angle ϕ autour de Oz; appelons Ox'y'z' le repère orthonormé se déduisant de Oxyz par cette dernière rotation. En transposant convenablement les résultats ci-dessus, on voit que les composantes (x', y', z') d'un même vecteur sur Ox'y'z' sont reliées à ses composantes (x, y, z) par :

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \stackrel{\text{def}}{=} \mathcal{R}_3(\phi) \begin{bmatrix} x \\ y \\ z \end{bmatrix} .$$

Maintenant, le repère OXYZ se déduisant de Ox'y'z' par une rotation autour de Ox', on a :

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \stackrel{\text{def}}{=} \mathcal{R}_1(\theta) \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} ,$$

d'où:

$$\left[\begin{array}{c} X \\ Y \\ Z \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{array} \right] \left[\begin{array}{ccc} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] \; .$$

Effectuant le produit des matrices, on a finalement :

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\cos \theta \sin \phi & \cos \theta \cos \phi & \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathcal{R}_1(\theta)\mathcal{R}_3(\phi) \begin{bmatrix} x \\ y \\ z \end{bmatrix} .$$

On remarque que la matrice du produit $\mathcal{R}_1(\theta)\mathcal{R}_3(\phi)$ n'est pas invariante dans l'échange de θ et ϕ , traduisant le fait que deux rotations autour de deux axes différents ne commutent pas.

2. (a) Le produit scalaire $\vec{a}_1.\vec{b}_2$ vaut $\vec{a}_1.\frac{\vec{a}_3 \times \vec{a}_1}{(\vec{a}_1,\vec{a}_2,\vec{a}_3)} = 0$ puisque le numérateur est un produit mixte contenant deux vecteurs identiques ; il en va de même pour tous

les $\vec{a}_i.\vec{b}_j$ si $i \neq j$. En revanche, $\vec{a}_1.\vec{b}_1 = \vec{a}_1.\frac{\vec{a}_2 \times \vec{a}_3}{(\vec{a}_1,\vec{a}_2,\vec{a}_3)} = 1$, et de même pour les deux autres $\vec{a}_i.\vec{b}_i$. Au total :

$$\vec{a}_i \cdot \vec{b}_j = \delta_{ij}$$

Les \vec{b}_j sont (à un éventuel facteur 2π près tributaire d'une convention) les vecteurs d'un espace \mathbb{R}^3 dit $r\acute{e}ciproque$.

(b) Avec $\vec{r}=\sum_i \nu_i \vec{a}_i$ et $\vec{k}=\sum_j \mu_j \vec{b}_j$, utilisant la distributivité du produit scalaire, on a :

$$\vec{k}.\vec{r} = \sum_{i} \sum_{j} \nu_{i} \mu_{j} \vec{a}_{i}.\vec{b}_{j} = \sum_{i} \sum_{j} \nu_{i} \mu_{j} \delta_{ij} = \sum_{i} \nu_{i} \mu_{i} \ .$$

(c) Si $\vec{R} = \sum_i n_i \vec{a}_i$ où $n_i \in \mathbb{Z}$, c'est-à-dire si \vec{R} est une combinaison en *entiers* des trois \vec{a}_i , on a plus précisément $\vec{k}.\vec{R} = \sum_i n_i \mu_i$; la condition cherchée s'écrit alors:

$$e^{i\sum_i n_i \mu_i} = 1 \quad \forall n_i$$
.

Choisissant $n_2 = n_3 = 0$, il faut $e^{in_1\mu_1} = 1$ quel que soit n_1 , c'est-à-dire que μ_1 est un multiple entier de 2π . Répétant le même argument avec $n_1 = n_3 = 0$ et $n_1 = n_2 = 0$, on voit finalement que la condition est équivalente à dire que $\frac{1}{2\pi}\vec{k}$ est une combinaison linéaire en entiers des trois vecteurs \vec{b}_j :

$$|\vec{k} = 2\pi \sum_j m_j \vec{b}_j \quad m_j \in \mathbb{Z}$$

(d) On part de l'égalité:

$$x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 = \frac{1}{(\vec{a}_1, \vec{a}_2, \vec{a}_3)} [\xi_1\vec{a}_2 \times \vec{a}_3 + \xi_2\vec{a}_3 \times \vec{a}_1 + \xi_3\vec{a}_1 \times \vec{a}_2]$$

que l'on multiplie scalairement par \vec{a}_1 ; il vient ainsi :

$$x_1\vec{a}_1.\vec{a}_1 + x_2\vec{a}_1.\vec{a}_2 + x_3\vec{a}_1.\vec{a}_3 = \xi_1$$
,

puisque \vec{a}_1 est orthogonal à $\vec{a}_3 \times \vec{a}_1$ et à $\vec{a}_1 \times \vec{a}_2$. D'une façon générale, et posant $g_{ij} \stackrel{\text{def}}{=} \vec{a}_i . \vec{a}_j = g_{ji}$, on a :

$$\begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{12} & g_{22} & g_{23} \\ g_{13} & g_{23} & g_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \stackrel{\text{def}}{=} \mathbf{g} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} ,$$

le calcul par la méthode classique de la matrice inverse conduit à :

$$\mathbf{g}^{-1} = \frac{1}{D} \begin{bmatrix} -g_{23}^2 + g_{22}g_{33} & g_{13}g_{23} - g_{12}g_{33} & -g_{13}g_{22} + g_{12}g_{23} \\ g_{13}g_{23} - g_{12}g_{33} & -g_{13}^2 + g_{11}g_{33} & g_{12}g_{13} - g_{11}g_{23} \\ -g_{13}g_{22} + g_{12}g_{23} & g_{12}g_{13} - g_{11}g_{23} & -g_{12}^2 + g_{11}g_{22} \end{bmatrix}.$$

avec $D = g_{11}g_{22}g_{33} + 2g_{12}g_{13}g_{23} - g_{11}g_{23}^2 - g_{22}g_{13}^2 - g_{33}g_{12}^2$.

3. (a) Soit \vec{M}' , de composantes (x', y', z'), le vecteur transformé de \vec{M} de composantes (x, y, z) par la rotation d'angle θ autour de Ox. Comme il est équivalent de laisser le vecteur immobile et de faire tourner le repère en sens inverse, on a :

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \stackrel{\text{def}}{=} M_{Ox, \theta} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

De même pour la rotation autour de Oz:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta' & -\sin \theta' & 0 \\ \sin \theta' & \cos \theta' & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \stackrel{\text{def}}{=} M_{\mathrm{O}z,\,\theta'} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \ .$$

(b) En effectuant le produit $M_{Ox, \theta} M_{Oz, \theta'}$, on obtient :

$$M_{\mathrm{O}x,\,\theta}M_{\mathrm{O}z,\,\theta'} = \begin{bmatrix} \cos\theta' & -\sin\theta' & 0\\ \cos\theta\sin\theta' & \cos\theta\cos\theta' & -\sin\theta\\ \sin\theta\sin\theta' & \sin\theta\cos\theta' & \cos\theta \end{bmatrix} ,$$

alors que le produit dans l'autre ordre est :

$$M_{\mathrm{O}z,\,\theta'}M_{\mathrm{O}x,\,\theta} = \left[\begin{array}{ccc} \cos\theta' & -\sin\theta'\cos\theta & \sin\theta'\sin\theta \\ \sin\theta' & \cos\theta'\cos\theta & -\cos\theta'\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right] \; ,$$

montrant que ces deux rotations ne commutent pas :

$$\boxed{M_{\mathrm{O}x,\,\theta}M_{\mathrm{O}z,\,\theta'} \neq M_{\mathrm{O}z,\,\theta'}M_{\mathrm{O}x,\,\theta} \iff \left[M_{\mathrm{O}x,\,\theta},\,M_{\mathrm{O}z,\,\theta'}\right] \neq 0}$$

(c) On peut illustrer géométriquement la non-commutativité de deux rotations en choisissant un cas très simple, par exemple en prenant le vecteur unitaire \vec{i} de Ox et en lui appliquant deux rotations de 90° dans un ordre ou l'autre :

$$\vec{i} \overset{R_{x,\frac{\pi}{2}}}{\longrightarrow} \vec{i} \overset{R_{z,\frac{\pi}{2}}}{\longrightarrow} \vec{j} , \qquad \vec{i} \overset{R_{z,\frac{\pi}{2}}}{\longrightarrow} \vec{j} \overset{R_{x,\frac{\pi}{2}}}{\longrightarrow} \vec{k} .$$

(d) Au contraire, deux rotations quelconques autour du $m\hat{e}me$ axe commutent entre elles de toute évidence. Ceci se retrouve évidenment sur le produit des matrices les représentant. Pour des rotations autour de Oz par exemple, on a :

$$M_{\mathrm{O}z,\,\theta}M_{\mathrm{O}z,\,\theta'} = \left[\begin{array}{ccc} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} \cos\theta' & -\sin\theta' & 0 \\ \sin\theta' & \cos\theta' & 0 \\ 0 & 0 & 1 \end{array} \right] \; ,$$

produit qui s'effectue pour donner :

$$\begin{bmatrix} \cos\theta\cos\theta' - \sin\theta\sin\theta' & -\sin\theta\cos\theta' - \sin\theta'\cos\theta & 0\\ \sin\theta\cos\theta' + \sin\theta'\cos\theta & \cos\theta\cos\theta' - \sin\theta\sin\theta' & 0\\ 0 & 0 & 1 \end{bmatrix} ,$$

où l'on reconnaît les lignes trigonométriques de l'angle $\theta + \theta'$, de sorte que cette matrice est égale à :

$$\begin{bmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') & 0\\ \sin(\theta + \theta') & \cos(\theta + \theta') & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

La commutation est alors évidente puisque $\theta + \theta' = \theta' + \theta$, mais elle l'était déjà au vu de la matrice produit.

4. Les matrices $M_{\text{O}u,\,\theta}$ possèdent un inverse (ce sont des transformations orthogonales); leur déterminant est égal à +1. On trouve aisément, par exemple :

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

montrant que $M_{\mathcal{O}u,\,\theta}^{-1}=M_{\mathcal{O}u,\,-\theta}$ comme il se doit.

1.9 Calcul d'un déterminant

(S) 4 Montrer que le déterminant :

$$D_{N}(a_{1}, a_{2}, ..., a_{N}; x) \stackrel{\text{def}}{=} \begin{vmatrix} a_{1} + x & x & x & ... & x \\ x & a_{2} + x & x & ... & x \\ x & x & a_{3} + x & ... & x \\ \vdots & \vdots & \vdots & ... & \vdots \\ x & x & x & x & ... & a_{N} + x \end{vmatrix}$$
(1.14)

est égal à $a_1a_2...a_N \left[1+x\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_N}\right)\right]$. Commenter ce résultat en examinant les dérivées de $D_N(a_1,\,a_2,\,...,\,a_N\,;\,x)$ par rapport à x.

En retranchant l'avant-dernière colonne de la dernière, il vient :

$$D_{N}(a_{1}, a_{2}, ..., a_{N}; x) = \begin{vmatrix} a_{1} + x & x & x & ... & 0 \\ x & a_{2} + x & x & ... & 0 \\ x & x & a_{3} + x & ... & 0 \\ \vdots & \vdots & \vdots & ... & \vdots \\ x & x & x & x & ... & a_{N} \end{vmatrix},$$
(1.15)

soit $D_N(a_1, a_2, ..., a_N; x) = a_N D_{N-1}(a_1, a_2, ..., a_{N-1}; x)$ par développement suivant la dernière colonne. De proche en proche, on en déduit :

$$D_N(a_1, a_2, ..., a_N; x) = a_N a_{N-1} ... a_2 D_1(a_1; x)$$
.

 $^{^4\}mathrm{Rappelons}$ que ce symbole désigne un problème ajouté de puis l'édition 2011 du livre de cours.

Comme $D_1(a_1; x) = a_1 + x$, on obtient l'égalité cherchée après mise en facteur du produit des a_n .

La dérivée d'un déterminant s'obtient en faisant la somme des dérivées des colonnes ou des lignes. Dérivant ici les colonnes, on voit immédiatement que toutes les dérivées d'ordre supérieur ou égal à 2 sont nulles ; la valeur de D_N en x=0 est manifestement le produit des a_n , et la première dérivée est immédiate à calculer, d'où le développement de Taylor de $D_N(a_1, a_2, ..., a_N; x)$ centré en x=0.

1.10 Déterminant de van der Monde

(S) Un déterminant de van der Monde est de la forme :

$$D_{N}(a_{1}, a_{2}, ..., a_{N}) \stackrel{\text{def}}{=} \begin{bmatrix} 1 & a_{1} & a_{1}^{2} & ... & a_{1}^{N-1} \\ 1 & a_{2} & a_{2}^{2} & ... & a_{2}^{N-1} \\ 1 & a_{3} & a_{3}^{2} & ... & a_{3}^{N-1} \\ \vdots & \vdots & \vdots & ... & \vdots \\ 1 & a_{N-1} & a_{N-1}^{2} & ... & a_{N-1}^{N-1} \\ 1 & a_{N} & a_{N}^{2} & ... & a_{N}^{N-1} \end{bmatrix}$$

$$(1.16)$$

1. En utilisant la multilinéarité, montrer que ce déterminant est égal à :

$$\begin{vmatrix}
1 & a_1 & a_1^2 & \dots & 0 \\
1 & a_2 & a_2^2 & \dots & a_2^{N-2}(a_2 - a_1) \\
1 & a_3 & a_3^2 & \dots & a_3^{N-2}(a_3 - a_1) \\
\vdots & \vdots & \vdots & \dots & \vdots \\
1 & a_{N-1} & a_{N-1}^2 & \dots & a_{N-1}^{N-2}(a_{N-1} - a_1) \\
1 & a_N & a_N^2 & \dots & a_N^{N-2}(a_N - a_1)
\end{vmatrix}$$
(1.17)

2. Répétant la même opération sur les colonnes deux à deux, en déduire que :

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & a_{2} - a_{1} & a_{2}(a_{2} - a_{1}) & \dots & a_{2}^{N-2}(a_{2} - a_{1}) \\ 1 & a_{3} - a_{1} & a_{3}(a_{3} - a_{1}) & \dots & a_{3}^{N-2}(a_{3} - a_{1}) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_{N-1} - a_{1} & a_{N-1}(a_{N-1} - a_{1}) & \dots & a_{N-1}^{N-2}(a_{N-1} - a_{1}) \\ 1 & a_{N} - a_{1} & a_{N}(a_{N} - a_{1}) & \dots & a_{N}^{N-2}(a_{N} - a_{1}) \end{vmatrix}$$

$$(1.18)$$

- 3. Exprimer D_N à l'aide d'un déterminant de dimension inférieure.
- 4. En déduire que :

$$D_N(a_1, a_2, ..., a_N) = \prod_{1 \le m < n < N} (a_n - a_m)$$
(1.19)

- 5. Commenter cette expression.
- 6. En s'appuyant sur le cas particulier N=4 et $a_n=x^{n-1}$, trouver les zéros du polynôme $P_4(x)=x^4-3x^5+x^6+4x^7-2x^8-2x^9-2x^{10}+4x^{11}+x^{12}-3x^{13}+x^{14}$.

1. On multiplie l'avant-dernière colonne par a_1 puis on la retranche de la dernière pour obtenir :

$$\begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{N-1} & 0 \\ 1 & a_2 & a_2^2 & \dots & a_1 a_2^{N-2} & a_2^{N-2} (a_2 - a_1) \\ 1 & a_3 & a_3^2 & \dots & a_1 a_3^{N-2} & a_3^{N-2} (a_3 - a_1) \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 1 & a_{N-1} & a_{N-1}^2 & \dots & a_1 a_{N-1}^{N-2} & a_{N-1}^{N-2} (a_{N-1} - a_1) \\ 1 & a_N & a_N^2 & \dots & a_1 a_N^{N-2} & a_N^{N-2} (a_N - a_1) \end{vmatrix}$$

$$(1.20)$$

2. Multipliant maintenant l'avant-avant dernière colonne par a₁ et la retranchant de l'avant-dernière, puis répétant cette opération sur les couples de colonnes, on arrive de proche en proche à :

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & a_2 - a_1 & a_2(a_2 - a_1) & \dots & a_2^{N-2}(a_2 - a_1) \\ 1 & a_3 - a_1 & a_3(a_3 - a_1) & \dots & a_3^{N-2}(a_3 - a_1) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_{N-1} - a_1 & a_{N-1}(a_{N-1} - a_1) & \dots & a_{N-1}^{N-2}(a_{N-1} - a_1) \\ 1 & a_N - a_1 & a_N(a_N - a_1) & \dots & a_N^{N-2}(a_N - a_1) \end{vmatrix}$$

$$(1.21)$$

3. En développant suivant la première ligne puis en mettant en facteur $(a_2 - a_1)$, $(a_3 - a_1), ..., (a_N - a_1)$, on obtient un déterminant de van der Monde de dimension N-1; très précisément :

$$D_N(a_1, a_2, ..., a_N) = (a_2 - a_1)(a_3 - a_1)...(a_N - a_1)D_{N-1}(a_2, a_3, ..., a_N)$$
. (1.22)

- 4. Le résultat précédent permet d'affirmer que le déterminant $D_{N-1}(a_2, a_3, ..., a_N)$ est égal à $(a_3 a_2)(a_4 a_2)...(a_N a_2)D_{N-2}(a_3, a_4, ..., a_N)$, et ainsi de suite, d'où finalement l'expression (1.19).
- 5. On observe que le déterminant est bien nul si deux ou plusieurs a_n coïncident.
- 6. Avec N=4 et $a_n=x^{n-1}$, le déterminant de van der Monde est :

$$D_4(1, x, x^2, x^3) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & x & x^2 & x^3 \\ 1 & x^2 & x^4 & x^6 \\ 1 & x^3 & x^6 & x^9 \end{vmatrix}$$
 (1.23)

dont le calcul montre qu'il est justement égal à $P_4(x)$. On sait d'après (1.22) que ce déterminant a aussi pour expression :

$$(x-1)(x^2-1)(x^3-1)(x^2-x)(x^3-x)(x^3-x^2) \equiv x^4(x-1)^6(x+1)^2(x^2+x+1)$$
,

d'où l'on déduit les zéros de P(x): 0 (quadruple), 1 (sextuple), -1 (double) et $\frac{1}{2}(-1\pm \mathrm{i}\sqrt{3})$. Avec N=5, on obtient de même :

$$P_5(x) = x^{10}(1 - 4x^{+}3x^{2} + 6x^{3} - 7x^{4} - 2x^{5} - 4x^{6} + 10x^{7} + 6x^{8} - 10x^{9} + 2x^{10} - 10x^{11} + 6x^{12} + 10x^{13} - 4x^{14} - 2x^{15} - 7x^{16} + 6x^{17} + 3x^{18} - 4x^{19} + x^{20}).$$

Après factorisation selon (1.22), il vient :

$$P_5(x) = x^{10}(x-1)^{10}(x+1)^4(x^2+1)(x^2+x+1)^2$$

d'où les zéros de $P_5(x)$: $0, \pm 1, \pm i$ et $\frac{1}{2}(-1 \pm i\sqrt{3})$ avec les multiplicités respectives 10, 10, 4, 1, 1, 2 et 2.

1.11 Déterminant de Gram - Schmidt

Soit $\{\mathbf{e}_n\}$ une base d'un espace vectoriel euclidien \mathcal{E}_N de dimension N muni du produit scalaire $(\mathbf{e}_n,\,\mathbf{e}_m)\stackrel{\mathrm{def}}{=} g_{nm}$. Les déterminants Δ_n de Gram - Schmidt sont par définition $\Delta_M\stackrel{\mathrm{def}}{=} \det(g_{nm}),\,1\!\leq\!M\!\leq\!N$. Montrer que les Δ_M sont tous différents de zéro.

L'espace étant euclidien, on a $g_{nm}=g_{mn}$. Δ_1 n'est autre que $g_{11}>0$ puisqu'il est le carré de la norme d'un vecteur de base ; on a ensuite $\Delta_2=\begin{vmatrix}g_{11}&g_{12}\\g_{21}&g_{22}\end{vmatrix}=g_{11}g_{22}-g_{12}^2$. Soit le vecteur $x_1\mathbf{e}_1+x_2\mathbf{e}_2\neq 0$ ($x_1x_2\neq 0$) ; le carré de sa norme⁵ est $x_1^2g_{11}+2x_1x_2g_{12}+x_2^2g_{22}$, et il est strictement positif. Il en résulte que le trinôme en $\lambda\stackrel{\text{def}}{=}\frac{x_1}{x_2}$ a un discriminant négatif, d'où $g_{12}^2-g_{11}g_{22}<0$, montrant que $\Delta_2>0$.

Plus généralement, le carré de la norme du vecteur non nul $\sum_{n=1}^{M} x_n \mathbf{e}_n$ est la forme quadratique symétrique $\Phi(x_1, x_2, ..., x_M) \stackrel{\text{def}}{=} \sum_{n=1}^{M} \sum_{m=1}^{M} g_{nm} x_n x_m$, qui est strictement positive quels que soient les x_n . Une telle forme est diagonalisable par une transformation orthogonale \mathbf{O} reliant les x_n à des X_q suivant $\mathbf{x} = \mathbf{O}\mathbf{X}$ de telle sorte que :

$$\Phi(x_1, x_2, ..., x_M) = \Phi_{\text{diag}}(X_1, X_2, ..., X_M) \stackrel{\text{def}}{=} \sum_{q=1}^M G_q X_q^2 \qquad (1 \le M \le N)$$

⁵L'espace est Euclidien, non hermitien ; le corps est celui des réels et donc aucune conjugaison complexe n'est requise.

où tous les G_q sont strictement positifs. La matrice diagonale \mathbf{G} d'éléments G_q est reliée à la matrice \mathbf{g} des g_{nm} par l'égalité $\mathbf{g} = \mathbf{O}\mathbf{G}\mathbf{O}^{-1}$; en vertu de $\det{(\mathbf{A}\mathbf{B})} = \det{\mathbf{A}} \det{\mathbf{B}}$, cette égalité donne au niveau des déterminants :

$$\det \mathbf{g} = \det \left(\mathbf{O} \mathbf{G} \mathbf{O}^{-1} \right) = \det \mathbf{O} \det \mathbf{G} \det \mathbf{O}^{-1} = \det \mathbf{O} \det \mathbf{G} \frac{1}{\det \mathbf{O}} = \det \mathbf{G} = \prod_{q=1}^{M} G_q > 0 ,$$

d'où le résultat puisque det \mathbf{g} ci-dessus n'est autre que Δ_M , par définition.

1.12 Équation d'Abel

L'équation d'Abel généralisée est :

$$\int_0^x \frac{f(x')}{(x-x')^{\alpha}} \, \mathrm{d}x' = \sigma(x) \ , \tag{1.24}$$

où α est un exposant compris entre 0 et 1 et $\sigma(x)$ une fonction dérivable à dérivée continue.

1. Après multiplication membre à membre par $(x-x'')^{\alpha-1}$ et intégration, montrer que :

$$\int_0^x f(x') \, \mathrm{d}x' \int_{x'}^x \frac{(x - x'')^{\alpha - 1}}{(x'' - x')^{\alpha}} \, \mathrm{d}x'' = \Sigma(x) , \qquad (1.25)$$

où $\Sigma(x)$ est une certaine intégrale.

- 2. Montrer que l'intégrale interne est égale à $\frac{\pi}{\sin \alpha \pi}$ (voir 6 chapitre 7, (C-7.64)).
- 3. En déduire que $f(x) = \frac{1}{\pi} \sin \alpha \pi \Sigma'(x)$.
- 4. Montrer finalement que la solution de l'équation intégrale d'Abel peut se mettre sous la forme :

$$f(x) = \frac{1}{\pi} \sin \alpha \pi \left[\sigma(0) x^{\alpha - 1} + \int_0^x (x - x')^{\alpha - 1} \sigma'(x') dx' \right] . \tag{1.26}$$

L'hypothèse $\alpha < 1$ est d'emblée requise afin que le premier membre de l'équation d'Abel existe, sans devoir rien supposer de particulier sur le comportement de l'inconnue f(x).

⁶On y trouvera l'égalité $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$, dite formule des compléments.

1. Après multiplication membre à membre par $(x - x'')^{\alpha - 1}$ de (1.24) et intégration membre à membre sur x'', il vient :

$$\int_0^x \mathrm{d}x'' \int_0^{x''} (x - x'')^{\alpha - 1} \frac{f(x')}{(x'' - x')^{\alpha}} \, \mathrm{d}x' = \int_0^x \sigma(x'') (x - x'')^{\alpha - 1} \, \mathrm{d}x'' .$$

Échangeant l'ordre des intégrations à gauche, on obtient :

$$\int_0^x f(x') dx' \int_{x'}^x \frac{(x - x'')^{\alpha - 1}}{(x'' - x')^{\alpha}} dx'' = \Sigma(x) , \quad \Sigma(x) = \int_0^x (x - x'')^{\alpha - 1} \sigma(x'') dx'' .$$

Noter que c'est ici qu'intervient l'hypothèse additionnelle $\alpha>0$ afin d'assurer la convergence de l'intégrale interne à sa borne inférieure.

- 2. L'intégrale interne est $\int_{x'}^x (x-x'')^{\alpha-1} (x''-x')^{-\alpha} dx''$, d'où l'idée de poser x''-x'=y, qui donne $\int_0^{x-x'} (x-x'-y)^{\alpha-1} y^{-\alpha} dy$, forme qui suggère à son tour de poser y=(x-x')t pour obtenir l'intégrale $\int_0^1 (x-x')^{\alpha-1} (1-t)^{\alpha-1} (x-x')^{-\alpha} t^{-\alpha} (x-x') dt$, soit $\int_0^1 (1-t)^{\alpha-1} t^{-\alpha} dt$. Cette dernière intégrale est la fonction $B(\alpha,1-\alpha)$ d'Euler (chapitre 7, section 7.1), égale à $\frac{\Gamma(\alpha)\Gamma(1-\alpha)}{\Gamma(\alpha+1-\alpha)} = \Gamma(\alpha)\Gamma(1-\alpha)$, ce dernier produit étant égal à $\frac{\pi}{\sin\alpha\pi}$ en vertu de la formule des compléments. Le point important est que le résultat de cette intégration est indépendant de x' (et d'ailleurs aussi de x).
- 3. Compte tenu de ceci, on a maintenant:

$$\frac{\pi}{\sin \alpha \pi} \int_0^x f(x') \, \mathrm{d}x' = \Sigma(x) \implies f(x) = \frac{1}{\pi} \sin \alpha \pi \, \Sigma'(x) \ .$$

4. On a donc:

$$f(x) = \frac{1}{\pi} \sin \alpha \pi \frac{\mathrm{d}}{\mathrm{d}x} \int_0^x (x - x'')^{\alpha - 1} \sigma(x'') \, \mathrm{d}x'' = \frac{1}{\pi} \sin \alpha \pi \frac{\mathrm{d}}{\mathrm{d}x} \int_0^x x'^{\alpha - 1} \sigma(x - x') \, \mathrm{d}x'.$$

Rappelons comment effectuer la dérivation du terme intégral, le plus direct étant d'en revenir à la définition de la dérivée :

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x x'^{\alpha-1} \sigma(x-x') \, \mathrm{d}x' = \lim_{h \to 0} \frac{1}{h} \left[\int_0^{x+h} x'^{\alpha-1} \sigma(x+h-x') \, \mathrm{d}x' - \int_0^x x'^{\alpha-1} \sigma(x-x') \, \mathrm{d}x' \right] ;$$

Le grand crochet est :

$$\left[\dots \right] = \int_0^x x'^{\alpha - 1} [\sigma(x + h - x') - \sigma(x - x')] dx' + \int_x^{x + h} x'^{\alpha - 1} \sigma(x + h - x') dx' ;$$

la fonction σ étant dérivable et à dérivée continue, on peut écrire :

$$\sigma(x+h-x') = \sigma(x-x') + h\sigma'(x-x') + h\eta(x-x'; h) , \lim_{h\to 0} \eta(x-x'; h) = 0, \forall x-x' ,$$

d'où:

$$\left[\dots \right] = h \int_0^x x'^{\alpha - 1} \left[\sigma'(x - x') + \eta(x - x'; h) \right] dx' + \int_x^{x + h} x'^{\alpha - 1} \sigma(x + h - x') dx'.$$

Reportant ces expressions dans le grand crochet figurant dans la définition de la dérivée, il reste après simplification des termes qui se compensent :

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x x'^{\alpha-1} \sigma(x - x') \, \mathrm{d}x' = \int_0^x x'^{\alpha-1} \sigma'(x - x') \, \mathrm{d}x' + \lim_{h \to 0} \left[\int_0^x \eta(x - x'; h) \, \mathrm{d}x' + \frac{1}{h} \int_x^{x+h} x'^{\alpha-1} \sigma(x + h - x') \, \mathrm{d}x' \right].$$

 η tendant vers zéro avec h, la première intégrale est nulle à la limite ; par ailleurs, la fonction σ étant continue (puisqu'elle est dérivable) sur le compact [x, x+h], elle est bornée, assurant que la limite du terme à droite d'une part existe et d'autre part est égale à $x^{\alpha-1}\sigma(0)$. En définitive :

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x x'^{\alpha-1} \sigma(x-x') \, \mathrm{d}x' = \int_0^x x'^{\alpha-1} \sigma'(x-x') \, \mathrm{d}x' + x^{\alpha-1} \sigma(0) ,$$

dont le mode de formation est clair, pourvu que σ ait les propriétés mentionnées cidessus : le premier terme vient d'une dérivation sous l'intégrale, le deuxième résulte du fait que $\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x f(x') \, \mathrm{d}x' = f(x)$, égalité parfois appelée théorème fondamental du calcul intégral. Cette expression de la dérivée peut être transformée en posant x'' = x - x' afin d'obtenir la forme traditionnelle de la solution de l'équation d'Abel généralisée :

$$f(x) = \frac{1}{\pi} \sin \alpha \pi \left[\sigma(0) x^{\alpha - 1} + \int_0^x (x - x'')^{\alpha - 1} \sigma'(x'') dx'' \right]$$

igl Remarque

Cette équation, rencontrée à propos du pendule isochrone de Huyghens (chapitre 9, sous-section 9.5.6) avec $\alpha = \frac{1}{2}$, y est résolue en tant qu'application du théorème de convolution pour la transformation de Laplace.

1.13 Équation de Fredholm

1. Soit l'équation de Fredholm de seconde espèce :

$$f(x) - \lambda \int_{-\pi}^{+\pi} (x \cos x' + x'^2 \sin x + \cos x \sin x') f(x') dx' = x .$$
 (1.27)

Trouver sa solution quand $\lambda \neq \pm i \frac{1}{\pi \sqrt{2}}$.

2. Trouver les noyaux itérés et la série de Neumann pour l'équation de Fredholm de seconde espèce dont le noyau est K(x,x')=xx', les bornes de l'intégrale étant $a\!=\!0$ et $b\!=\!1$; pour quelles valeurs de λ la série est-elle convergente ? En déduire la forme générale de la solution pour une source $\sigma(x)$ donnée.

 Quelles sont les valeurs propres et les fonctions propres de l'équation de Fredholm de première espèce :

$$f(x) - \lambda \int_0^{+\pi} (\cos^2 x \cos 2x' + \cos 3x \cos^3 x') f(x') dx' = 0 ?$$
 (1.28)

4. L'équation :

$$f(x) - \lambda \int_0^1 (3x - 2)x' f(x') dx' = 0 ?$$
 (1.29)

a-t-elle des fonctions propres et des valeurs propres ? Plus généralement, discuter les solutions de :

$$f(x) - \lambda \int_0^1 (ax - 2)x' f(x') dx' = 0 , \qquad (1.30)$$

selon les valeurs du paramètre a.

5. Soit l'équation :

$$\int_{0}^{1} (\sqrt{x} x' - \alpha x \sqrt{x'}) f(x') dx' = \mu f(x) ?$$
 (1.31)

où α est un paramètre réel. Discuter l'existence de ses fonctions et valeurs propres selon que μ est réel ou complexe.

1. L'équation de Fredholm de seconde espèce proposée s'écrit :

$$f(x) = \left(1 + \lambda \int_{-\pi}^{+\pi} \cos x' f(x') \, dx'\right) x + \lambda \sin x \int_{-\pi}^{+\pi} x'^2 f(x') \, dx' +$$
 (1.32)

$$\lambda \cos x \int_{-\pi}^{+\pi} \sin x' f(x') dx' , \quad (1.33)$$

soit $f(x) = (1 + \lambda A)x + \lambda B \sin x + \lambda C \cos x$ avec :

$$A \stackrel{\text{def}}{=} \int_{-\pi}^{+\pi} \cos x' f(x') \, \mathrm{d}x' \ , \quad B \stackrel{\text{def}}{=} \int_{-\pi}^{+\pi} x'^2 f(x') \, \mathrm{d}x' \ , \quad C \stackrel{\text{def}}{=} \int_{-\pi}^{+\pi} \sin x' f(x') \, \mathrm{d}x'.$$

En réinjectant l'expression de f(x) ci-dessus dans ces définitions, il vient :

$$A = \int_{-\pi}^{+\pi} \cos x' \left[(1 + \lambda A)x' + \lambda \sin x' B + \lambda \cos x' C \right] dx' ,$$

$$B = \int_{-\pi}^{+\pi} x'^2 \left[(1 + \lambda A)x' + \lambda \sin x' B + \lambda \cos x' C \right] dx' ,$$

$$C = \int_{-\pi}^{+\pi} \sin x' \left[(1 + \lambda A)x' + \lambda \sin x' B + \lambda \cos x' C \right] dx' .$$

Chacune des intégrales présentes dans les seconds membres peut maintenant être effectivement calculée ; on obtient ainsi :

$$A = (1 + \lambda A) \times 0 + \lambda B \times 0 + \lambda C \times \pi ,$$

$$B = (1 + \lambda A) \times 0 + \lambda B \times 0 + \lambda C \times (-4\pi) ,$$

$$C = (1 + \lambda A) \times 2\pi + \lambda B \times \pi + \lambda C \times 0 ,$$

d'où le système linéaire inhomogène pour les trois inconnues $A,\,B$ et C:

$$A - \pi \lambda C = 0$$
 , $B + 4\pi \lambda C = 0$, $-2\pi \lambda A - \pi \lambda B + C = 2\pi$.

Le déterminant des inconnues est $D(\lambda) \stackrel{\text{déf}}{=} \left| \begin{array}{ccc} 1 & 0 & -\pi\lambda \\ 0 & 1 & 4\pi\lambda \\ -2\pi\lambda & -\pi\lambda & 1 \end{array} \right| = 1 + 2\pi^2\lambda^2$;

si donc $\lambda \neq \pm \frac{i}{\pi\sqrt{2}}$, l'application de la méthode systématique de résolution d'un tel système conduit à :

$$A = \frac{1}{D(\lambda)} \begin{vmatrix} 0 & 0 & -\pi\lambda \\ 0 & 1 & 4\pi\lambda \\ 2\pi & -\pi\lambda & 1 \end{vmatrix} = \frac{2\pi^2\lambda}{1 + 2\pi^2\lambda^2} ,$$

$$B = \frac{1}{D(\lambda)} \begin{vmatrix} 1 & 0 & -\pi\lambda \\ 0 & 0 & 4\pi\lambda \\ -2\pi\lambda & 2\pi & 1 \end{vmatrix} = -\frac{8\pi^2\lambda}{1 + 2\pi^2\lambda^2} ,$$

$$C = \frac{1}{D(\lambda)} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2\pi\lambda & -\pi\lambda & 2\pi \end{vmatrix} = \frac{2\pi}{1 + 2\pi^2\lambda^2} .$$

Dans ces conditions, la solution est *unique* et s'écrit :

$$f(x) = \left(1 + \frac{2\pi^2 \lambda^2}{1 + 2\pi^2 \lambda^2}\right) x - \frac{8\pi^2 \lambda^2}{1 + 2\pi^2 \lambda^2} \sin x + \frac{2\pi \lambda}{1 + 2\pi^2 \lambda^2} \cos x \qquad (\lambda \neq \pm \frac{i}{\pi\sqrt{2}})$$

Si au contraire $\lambda=\pm\frac{\mathrm{i}}{\pi\sqrt{2}}$, le système linéaire ci-dessus est d'ordre 2, l'une des équations étant combinaison linéaire des deux autres, entraînant que l'une des inconnues restera indéterminée. Ne retenant que les deux premières équations, on a $A=\pi\lambda C=\pm\frac{\mathrm{i}}{\sqrt{2}}C$, $B=-4\pi\lambda C=\mp2\mathrm{i}\sqrt{2}C$. L'équation :

$$f(x) \mp \frac{i}{\pi\sqrt{2}} \int_{-\pi}^{+\pi} (x\cos x' + x'^2 \sin x + \cos x \sin x') f(x') dx' = x$$

a alors une *infinité* de solutions :

$$f_C(x) = (1 - \frac{C}{2\pi})x + \frac{2C}{\pi}\sin x \pm i\frac{C}{\pi\sqrt{2}}\cos x \qquad (\lambda = \pm \frac{i}{\pi\sqrt{2}}) ,$$
 (1.34)

où C est une constante arbitraire.

La discussion de l'allure des solutions se fait aisément. Quand λ est réel (figure 1.1 à gauche), le graphe de f(x) est une droite (la première bissectrice) modulée par les lignes trigonométriques, l'amplitude des oscillations décroissant avec λ (si $\lambda = 0$, la solution est trivialement f(x) = x). Si λ est imaginaire pur, la partie imaginaire de f(x) est proportionnelle à $\cos x$, la partie réelle étant une ligne modulée (figure 1.1 à droite). Lorsque λ se rapproche des valeurs dangereuses $\pm \frac{i}{\pi \sqrt{2}}$, l'amplitude des oscillations devient de plus en plus grande, tout comme la pente de la contribution linéaire, pour diverger à la limite, d'où la dégénérescence de la solution, devenant (1.34). Supposant la constante C réelle, la partie réelle de $f_C(x)$ retrouve l'allure d'une droite modulée, sa partie imaginaire étant à nouveau proportionnelle à $\cos x$.

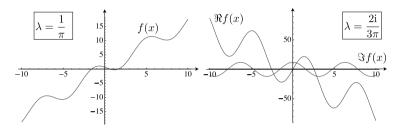


Figure 1.1: Graphe de la solution de l'équation (1.27) selon que le paramètre λ est réel (à gauche) ou imaginaire pur mais différent de $\pm \frac{i}{\pi \sqrt{2}}$ (à droite).

On retiendra l'importance de la nature complexe ou réelle du paramètre λ , et en particulier le fait que, lorsqu'il est imaginaire pur, il existe des valeurs pour lesquelles, posée comme ci-dessus, l'équation a une infinité de solutions. Si un tel cas se présente dans une situation concrète, de deux choses l'une : ou bien le problème est mal posé (existence d'une petite partie réelle négligée), ou bien un grand principe (physique par exemple), toujours à l'œuvre en coulisse, doit être explicitement invoqué, ce qui peut se traduire par des conditions aux limites fixant le comportement asymptotique ou une certaine valeur en un point ; par exemple, si f(x) en x=0 doit prendre une certaine valeur prescrite à l'avance, la constante C dans (1.34) se trouve ipso facto automatiquement fixée.

2. Pour l'équation de Fredholm de seconde espèce :

$$f(x) = \sigma(x) + \lambda \int_0^1 x x' f(x') dx'$$
(1.35)

les noyaux itérés sont :

$$K^{(1)}(x, x') = xx'$$
, $K^{(2)}(x, x') = \int_0^1 (xx'')(x''x') dx'' = \frac{xx'}{3}$,

$$K^{(3)}(x, x') = \int_0^1 (xx'') \frac{x''x'}{3} dx'' = \frac{xx'}{3^2}, ..., K^{(n)}(x, x') = \frac{xx'}{3^{n-1}},$$

d'où $\mathcal{N}(x, x'; \lambda) = \sum_{n \in \mathbb{N}^*} \lambda^{n-1} K^{(n)}(x, x') = \frac{3xx'}{3-\lambda}$, qui converge à l'intérieur du disque inclus dans \mathbb{C} centré à l'origine et de rayon 3; il ne semble pas facile, au simple vu de l'équation, de pouvoir affirmer avant tout calcul que toutes les valeurs complexes $|\lambda| = 3$ sont singulières, mais on peut en retrouver l'origine dans la condition générale $\left| \int_a^b \mathrm{d}x \int_a^b \mathrm{d}x' K(x, x') \right|^2 < 1$, qui prend ici la forme très simple :

$$|\lambda|^2 \Big| \int_0^1 dx \int_0^1 dx' \, xx' \Big|^2 \equiv \frac{1}{9} |\lambda|^2 < 1$$
,

d'où la condition $|\lambda| < 3$.

Pour une source $\sigma(x)$ donnée, la solution est donc :

$$f(x) = \sigma(x) + \frac{3\lambda x}{3 - \lambda} \int_0^1 x' \sigma(x') dx' \qquad (\lambda \in \mathbb{C}, |\lambda| < 3)$$

En particulier, pour une source constante σ_0 :

$$f(x) = \sigma_0 \left[1 + \frac{3\lambda x}{2(3-\lambda)} \right] \qquad (\lambda \in \mathbb{C}, |\lambda| < 3)$$

3. Pour l'équation de Fredholm de première espèce (1.28), on pose :

$$A \stackrel{\text{\tiny def}}{=} \int_0^{+\pi} \cos 2x' f(x') \, \mathrm{d}x' \ , \qquad B \stackrel{\text{\tiny def}}{=} \int_0^{+\pi} \cos^3 x' f(x') \, \mathrm{d}x' \ ,$$

de sorte que $f(x)=\lambda A\cos^2x+\lambda B\cos3x$, expression qui, reportée dans les définitions de A et B, donne :

$$A = \lambda \int_0^{+\pi} \cos 2x' (A\cos^2 x' + B\cos 3x') dx' = \lambda \left(\frac{\pi}{4} \times A + 0 \times B\right) ,$$

$$B = \lambda \int_0^{+\pi} \cos^3 x' (A\cos^2 x' + B\cos 3x') dx' = \lambda \left(0 \times A + \frac{\pi}{8} \times B\right) ,$$

d'où le système $(1-\lambda\frac{\pi}{4})A=0$, $(1-\lambda\frac{\pi}{8})B=0$. Il ne possède solutions non triviales que si $\lambda=\frac{4}{\pi}$, auquel cas B=0 et A est arbitraire, ou $\lambda=\frac{8}{\pi}$, valeur associée à A=0 et B arbitraire :

$$\lambda = \lambda_1 \stackrel{\text{def}}{=} \frac{4}{\pi} : \ f_{\lambda_1}(x) = C \cos^2 x \ ; \qquad \lambda = \lambda_2 \stackrel{\text{def}}{=} \frac{8}{\pi} : \ f_{\lambda_2}(x) = C \cos 3x$$

C étant une constante arbitraire, inévitable puisque l'équation est homogène (si f est solution, Cf l'est aussi quelle que soit la constante C).

Ces résultats peuvent clairement s'écrire sous la forme d'une équation aux valeurs et fonctions propres pour une matrice continue K(x, x'):

$$\int_0^{+\pi} K(x, x') f_{\lambda_i}(x') \, \mathrm{d}x' = \lambda_i f_{\lambda_i}(x) \ , \quad K(x, x') = \cos^2 x \cos 2x' + \cos 3x \cos^3 x' \ ,$$

ou même, utilisant la notation de Dirac $K(x, x') \equiv \langle x|K|x'\rangle$ et $f(x) \equiv \langle x|f\rangle$:

$$\forall x : \int_0^{+\pi} \langle x | K | x' \rangle \langle x' | f_{\lambda_i} \rangle \, \mathrm{d}x' = \lambda \langle x | f_{\lambda_i} \rangle \quad \Longleftrightarrow \quad K | f_{\lambda_i} \rangle = \lambda_i | f_{\lambda_i} \rangle \ .$$

4. L'équation (1.29) s'écrit :

$$f(x) = \lambda(3x - 2) \int_0^1 x' f(x') dx' \equiv \lambda(3x - 2) A$$
,

conduisant à l'égalité $A=\int_0^1 x'(3x'-2)\,A\,\mathrm{d}x'$ soit, calculant l'intégrale, $A=0\times A$: l'équation n'admet donc que la solution identiquement nulle ; elle ne possède aucune valeur propre, aucun vecteur propre.

Plus généralement, avec :

$$f(x) - \lambda \int_0^1 (ax - 2)x' f(x') dx' = 0$$
,

on a $f(x) = \lambda(ax-2) \int_0^1 x' f(x') dx' = \lambda(ax-2) A$, d'où la suite d'égalités :

$$A = \int_0^1 x' \lambda (ax' - 2) A dx' = \lambda (\frac{a}{3} - 1) A.$$

Avec $a \neq 3$, il existe cette fois une (et une seule) valeur propre $\lambda = \lambda_1 \stackrel{\text{def}}{=} \frac{3}{a-3}$, donnant la fonction propre :

$$\lambda = \lambda_1 \stackrel{\text{def}}{=} \frac{3}{a-3} : f_{\lambda_1}(x) = C(ax-2)$$

C étant arbitraire (noter que a peut tout à fait être complexe).

5. L'équation:

$$\int_0^1 (\sqrt{x} x' - \alpha x \sqrt{x'}) f(x') dx' = \mu f(x)$$

montre que $f(x) = \frac{1}{\mu} [\sqrt{x} A - \alpha x B]$ où $A = \int_0^1 x' f(x') dx'$ et $B = \int_0^1 \sqrt{x'} f(x') dx'$, d'où les égalités :

$$A = \frac{1}{\mu} \int_0^1 x' [\sqrt{x'} A - \alpha x' B] dx' = \frac{1}{\mu} (\frac{2}{5} A - \frac{\alpha}{3} B) ,$$

$$B = \frac{1}{\mu} \int_0^1 \sqrt{x'} [\sqrt{x'} A - \alpha x' B] dx' = \frac{1}{\mu} (\frac{1}{2} A - \frac{2\alpha}{5} B) ,$$

conduisant au système homogène :

$$(\mu - \frac{2}{5})A + \frac{\alpha}{3}B = 0$$
, $\frac{A}{2} - (\mu + \frac{2\alpha}{5})B = 0$.

Le déterminant des inconnues est $-(\mu-\frac{2}{5})(\mu+\frac{2\alpha}{5})-\frac{\alpha}{6}=-\mu^2-\frac{2}{5}(\alpha-1)\mu-\frac{\alpha}{150}$. S'il n'est pas nul, la seule solution est la solution triviale A=B=0; dans le cas contraire, $\mu^2+\frac{2}{5}(\alpha-1)\mu+\frac{\alpha}{150}=0$ donne les deux solutions :

$$\mu = \mu_{\pm}(\alpha) \stackrel{\mbox{\tiny def}}{=} \frac{1}{5} \Big[(1-\alpha) \pm \frac{1}{\sqrt{6}} \sqrt{6\alpha^2 - 13\alpha + 6} \Big] \ . \label{eq:mu}$$

Lorsque α est réel, les μ_{\pm} sont aussi réels si $\alpha < \alpha_{-} \stackrel{\text{def}}{=} \frac{2}{3}$ ou si $\alpha > \alpha_{+} \stackrel{\text{def}}{=} \frac{3}{2}$. Sinon, les deux fonctions $\mu_{\pm}(\alpha)$ sont complexes conjuguées l'une de l'autre (voir figure 1.2); c'est notamment le cas lorsque $\alpha = 1$ (alors le noyau est symétrique):

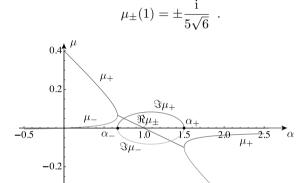


Figure 1.2: Variation en fonction de $\alpha \in \mathbb{R}$ des valeurs propres $\mu_{\pm}(\alpha)$ pour lesquelles l'équation homogène (1.31) possède des solutions autres que la solution triviale. μ_{\pm} est réel si $\alpha < \alpha_{-} = \frac{2}{3}$ ou si $\alpha > \alpha_{+} = \frac{3}{2}$; dans l'intervalle $[\alpha_{-}, \alpha_{+}]$, μ est complexe $(\mu_{-} = \mu_{+}^{*})$.

 μ étant choisi égal à $\mu_+(\alpha)$ ou $\mu_-(\alpha)$, la solution est $f_{\pm}(x) = \frac{A}{\mu_{\pm}}[\sqrt{x} - \alpha \frac{B}{A}x]$, soit :

$$f_{\pm}(x) = A \frac{5\sqrt{6} - \left[\sqrt{6}(1+\alpha) \pm \sqrt{6\alpha^2 - 13\alpha + 6}\right]\sqrt{x}}{\sqrt{6}(1-\alpha) \pm \sqrt{6\alpha^2 - 13\alpha + 6}} \sqrt{x}$$

où A est une constante arbitraire. Lorsque $\alpha \to 0$, on trouve $f_+(x) \to \frac{5}{2} \sqrt{x}$, qui est trivialement la solution de l'équation de départ avec $\alpha = 0$ cependant que $f_-(x) \to \infty$ puisque $\mu_- \to 0$.

1.14 Équation de Volterra

1. Trouver les résolvantes $\Gamma(x,\,x'\,;\,\lambda)$ des équations de Volterra de seconde espèce dont les noyaux sont :

$$K(x, x') = 1$$
, $K(x, x') = x - x'$, $K(x, x') = e^{x^2 - x'^2}$. (1.36)

2. Quelle est la solution de l'équation :

$$f(x) = e^{x^2} + \int_0^x e^{x - x'} e^{x^2 - x'^2} f(x') dx' ?$$
 (1.37)

1. L'équation de Volterra de seconde espèce est :

$$f(x) = \sigma(x) + \lambda \int_{a}^{x} K(x, x') f(x') dx'$$
 (1.38)

Les noyaux itérés sont $K^{(1)}(x, x') = K(x, x')$, et généralement :

$$K^{(n+1)}(x, x') = \int_{x'}^{x} K(x, x'') K^{(n)}(x'', x') dx'' \qquad (n \in \mathbb{N}^*) .$$

Avec K(x, x') = 1, on a $K^{(1)}(x, x') = 1$ puis :

$$K^{(2)}(x, x') = \int_{x'}^{x} 1.1 dx'' = x - x'$$
, $K^{(3)}(x, x') = \int_{x'}^{x} 1.(x'' - x') dx'' = \frac{(x - x')^2}{2!}$

et ainsi de suite : $K^{(n)}(x, x') = \frac{(x-x')^{n-1}}{(n-1)!}$, $n \in \mathbb{N}^*$. Le noyau résolvant $\Gamma(x, x'; \lambda)$ est la série $\sum_{n \in \mathbb{N}^*} \lambda^{n-1} K^{(n)}(x, x')$ soit ici :

$$\Gamma(x, x'; \lambda) = \sum_{n \in \mathbb{N}^*} \lambda^{n-1} \frac{(x - x')^{n-1}}{(n-1)!} = e^{\lambda(x - x')}$$

série qui converge quels que soient x et x'.

Avec K(x, x') = x - x', on a $K^{(1)}(x, x') = x - x'$, puis :

$$K^{(2)}(x, x') = \int_{x'}^{x} (x - x'')(x'' - x') dx'' = \frac{1}{6}(x - x')^{3},$$

$$K^{(3)}(x, x') = \int_{x'}^{x} (x - x'') \frac{1}{6} (x'' - x')^3 dx'' = \frac{1}{5!} (x - x')^5$$

Par récurrence, on établit sans peine que $K^{(n)}(x, x') = \frac{1}{(2n-1)!}(x-x')^{(2n-1)}$, donnant :

$$\Gamma(x, x'; \lambda) = \sum_{n \in \mathbb{N}^*} \lambda^{n-1} \frac{1}{(2n-1)!} (x - x')^{2n-1} = \lambda^{-1/2} \sinh[\lambda^{1/2} (x - x')]$$

Enfin, avec $K(x, x') = e^{x^2 - x'^2}$, on a $K^{(1)}(x, x') = e^{x^2 - x'^2}$ puis :

$$K^{(2)}(x, x') = \int_{x'}^{x} e^{x^2 - x''^2} e^{x''^2 - x'^2} dx'' = (x - x') e^{x^2 - x'^2} ,$$

$$K^{(3)}(x, x') = \int_{x'}^{x} e^{x^2 - x''^2} (x'' - x') e^{x''^2 - x'^2} dx'' = \frac{1}{2!} (x - x')^2 e^{x^2 - x'^2} ,$$

et ainsi de suite, de sorte que :

$$\Gamma(x, x'; \lambda) = \sum_{n \in \mathbb{N}^*} \lambda^{n-1} \frac{1}{(n-1)!} (x - x')^{n-1} e^{x^2 - x'^2} = e^{\lambda(x - x')} e^{x^2 - x'^2}$$

2. Avec $K(x, x') = e^{x-x'+x^2-x'^2}$, on a $K^{(1)}(x, x') = e^{x-x'+x^2-x'^2}$ puis :

$$K^{(2)}(x, x') = \int_{x'}^{x} e^{x - x'' + x^2 - x''^2} e^{x'' - x' + x''^2 - x'^2} dx'' = (x - x') e^{x - x' + x^2 - x'^2} ,$$

$$K^{(3)}(x, x') = \int_{x'}^{x} e^{x - x'' + x^2 - x''^2} (x'' - x') e^{x'' - x' + x''^2 - x'^2} dx'' = \frac{1}{2!} (x - x')^2 e^{x - x' + x^2 - x'^2} ,$$

et ainsi de suite, de sorte que (ici $\lambda = 1$):

$$\Gamma(x, x'; 1) = \sum_{n \in \mathbb{N}^*} \frac{(x - x')^{n-1}}{(n-1)!} e^{x - x' + x^2 - x'^2} = e^{2(x - x')} e^{x^2 - x'^2}.$$

Une fois trouvé le noyau résolvant de (1.38), la solution s'écrit :

$$f(x) = \sigma(x) + \lambda \int_{a}^{x} \Gamma(x, x'; \lambda) \sigma(x') dx';$$

l'équation proposée, (1.37), étant de ce type (avec $\lambda=1,\ a=0$ et $\sigma(x)={\rm e}^{x^2}$), sa solution est :

$$f(x) = e^{x^2} + \int_0^x e^{2(x-x')} e^{x^2 - x'^2} e^{x'^2} dx' = e^{x^2} + e^{x^2 + 2x} \frac{1}{2} (1 - e^{-2x}) ,$$

d'où l'unique solution de (1.37) :

$$f(x) = \frac{1}{2}e^{x^2}(1 + e^{2x})$$

Index

$\aleph_0, 144$	cycliques de Born - von Kármán, 902
\aleph_1 , 144	de Cauchy - Riemann, 162, 174, 175, 211,
$\infty_{\mathbb{C}}, 141, 144$	238, 239, 460, 464
	de Dirichlet, 732, 733
A	de raccordement, 695
accélérateur de convergence, 103	initiales, 540, 570, 571, 646, 652, 687, 690,
antikink, 751	695, 734
application logistique, 944	constante
arc simple de Jordan, 185	d'Euler, 83, 92, 395, 407, 409, 412, 414,
assez bonne fonction, 609, 610	416, 417, 525, 527, 820, 822
associativité, 1–3, 621, 872, 886, 888	de Catalan, 76
astroïde, 676	convergence
astroide, 010	absolue, 100, 117, 224, 398, 484, 790
D	simple, 575
В	stochastique, 852
barrière	uniforme, 58, 197, 215, 222, 223, 267, 332,
absorbante, 725	341, 356, 419, 791, 792
d'énergie, 453	convolution, 568, 570
parfaitement	de J_0 et J_0 , 556
absorbante, 716, 722, 723	de t^p et t^q , 557
réfléchissante, 712, 713, 722–725	de Bernoulli, 856
base orthonormée, 17, 19, 20, 22, 146, 488, 880,	coordonnées hypersphériques, 516, 518
883, 890, 895, 900	corde vibrante, 732
bifurcation, 904, 906, 923–926	amortie, 734–736
brisure de symétrie, 597, 745, 926	corps, 4, 6, 9, 14, 28, 152, 153, 888, 889
	des complexes, 14
\mathbf{C}	des quaternions, 889
	des réels, 28
caractéristiques (courbes), 737, 738	ordonné, 3, 4
cercle unité $\partial \mathcal{D}_1$, 276	coupure, 167, 169–171, 189, 237, 238, 242, 244,
changement de base, 20 coefficient	245, 251, 253, 261, 314, 316, 317,
	334, 335, 339, 342 - 347, 349, 357, 358,
de diffusivité thermique, 493	360, 366, 368, 441, 444, 445, 457,
de Fourier, 470, 471, 480, 483	534, 536, 538, 552, 553, 558, 578,
commutateur, 21	595, 606, 660, 662, 717, 749, 772
commutativité, 1, 154, 194	courant, 702, 712, 713, 716, 720, 721, 723
complément orthogonal, 14	couronne, 218, 219, 221, 224, 225, 232, 272, 370,
composantes, 15, 18, 20–22, 24, 516, 886, 888, 897	448, 450
	cumulants, 841, 842
contravariantes, 6	de la distribution
irréductibles, 895, 898	de Cantor, 848
condition	de Gumbel, 822
de Lipschitz, 658	de Poisson, 842
de Vitali, 488	Gamma, 842
initiale, 698, 699, 701, 702, 712, 713 conditions	cycle
	-limite, 160, 161, 911–913, 922
aux limites, 464–466, 712, 713, 726	semi-stable, 911, 922, 923

D	de Cauchy, 620, 622
décomposition en éléments simples, 92, 94, 107,	de Lagrange, 142
113, 203, 219, 220, 249, 258, 278,	énergie libre, 452, 454, 455
300, 376, 388, 920	d'excès, 453
densité de probabilité, 804–806, 825, 856	ensemble de Julia, 944, 945
conjointe, 828	entiers de Gauss, 154
marginale, 580	équation
de la loi Gamma, 812, 861, 862	autonome, 654
dérivée	aux différences finies, 543, 544
fractionnaire, 620, 622	non-linéaire, 687, 688
logarithmique, 789, 792	caractéristique, 10, 13, 19, 154
description à la Landau des phénomènes criti-	d'Abel, 29–31
ques, 452	d'Airy, 667–669, 741
déterminant	de Bernoulli, 677, 678
de Gram - Schmidt, 28	de Bessel, 663, 665, 672
de van der Monde, 26, 28	de Black - Scholes, 709
développement	de Clairaut, 676
asymptotique, 445	de conservation, 539, 584, 702, 703, 707-
de Laurent, 50, 183, 218, 219, 221–223,	709, 713, 744
231, 240, 264, 272, 289, 370, 376,	de Fredholm, 33
382, 448, 450, 639, 662	de première espèce, 35–37
de Mittag-Leffler, 180, 270, 286, 396, 420,	de seconde espèce, 31, 32, 34
547	de la chaleur, 493, 709, 710, 725, 726
de Taylor, 50, 104, 111, 112, 222, 226, 231,	de la diffusion
241, 243, 329, 388, 389, 441, 448,	avec des murs absorbants ou rayonnants,
450, 463, 552, 617, 842, 844, 846	722
diffusion	avec source, 727
avec des murs	de Langevin, 559
absorbants, 722	de Sturm - Liouville, 672
réfléchissants, 722	de transport, 514, 701–709
confinée, 712, 713, 722	de Vlasov, 580, 585
sur \mathbb{R}_+ , 712	linéarisée, 580, 582, 585, 588
distance	de Volterra, 673
cordale, 162, 163, 166	de seconde espèce, 37–39, 673, 674
homofocale, 151	différentielle, 698, 699
distribution	homogène, 646, 653, 670, 679, 680
$(1-x^2)_+^z$, 627–629	non-linéaire, 681
$\delta'(1-x^2)$, 616, 617	elliptique, 738
$\delta'(u(x)), 615$	hyperbolique, 730, 738
$\delta(u(x))$, 613 $\delta(1-x^2)$, 614, 616	parabolique, 498, 738
$\delta(1-x)$, 614, 616 $\delta(u(x))$, 614	quasi-linéaire, 729, 730
x_{+}^{2} , 617, 620–624, 626, 628, 639, 641, 644	espace
1	des phases, 932, 936
$x_{+}^{z} e^{-\varepsilon x}$, 625	étendu, 932, 936
de Dirac, 270, 284, 510, 612, 614, 616, 695,	euclidien, 28
706	réciproque, 23
marginale, 828, 829	symplectique, 884, 885
domaine, 185, 186	exposant de Lyapounov, 939, 942, 944
simplement connexe, 189, 195, 196, 222, 246, 249, 353	onposant de Ljapouner, vou, v12, v11
droite de Bromwich, 536, 538, 571, 578, 595,	F
606, 717	_
000, 111	facteur de pseudo-périodicité, 788, 791
D	ferromagnétique, 452
E	feuillet de Riemann, 596
écart-type, 804, 812, 826, 828, 856	Floquet, Achille Marie Gaston, 682
effet papillon, 90, 688, 903, 908	fonction
égalité	analytique, 50, 112, 202, 207, 208, 213,
de Bessel - Parseval - Plancherel, 489	214, 216, 226, 258, 367, 370, 407,

```
449, 453, 456, 509, 568, 590, 660-
                                                             confluente (dégénérée), 768, 780
     662, 668, 702, 704, 708, 770, 790
                                                           logarithme intégral, li(x), 123, 127
caractéristique, 801, 802, 804, 805, 807-
                                                           méromorphe, 180, 270, 277, 286, 304, 308,
     809, 811, 812, 814, 816, 818, 820,
                                                                311, 341, 367, 370, 378, 383, 385, 635
     821, 823, 824, 826, 829, 831, 833,
                                                           multiforme, 143, 167, 171, 206, 248, 302,
     837, 839, 842, 843, 846, 847, 850,
                                                                334, 339, 345, 357, 364, 366, 400,
     851, 858, 863
                                                                578, 595, 599–601, 603
  de Cantor, 117, 121, 846
                                                           partie entière, 501, 572, 573
  de Cauchy, 839, 842
                                                           polylogarithme, 804
  de la loi de Gumbel, 820, 821
                                                           porte, 355
  de la loi Gamma, 805, 812, 816
                                                          signe sgn x, 44, 81, 242, 243, 269, 281–283,
  de Poisson, 837, 839, 842
                                                                287, 290, 303, 348, 391, 513, 514,
                                                                532, 579, 704, 707, 709, 719, 730
concave, 62, 64
                                                           sinus cardinal sinc t = \frac{\sin t}{4}, 850, 858
convexe, 61
                                                           sinus intégral Si, 80, 447, 530-532
cosinus intégral Ci, 447
d'Euler
                                                           transcendante de Lerch, 110
  de deuxième espèce \Gamma(z), 207, 277, 334,
                                                     fonctionnelle, 632, 639
                                                           (1-x^2)_+^z, 628, 631
     393, 394, 396, 401, 565
                                                          r^z, 641, 644
  de première espèce B(p, q), 118, 207,
     337, 342, 356, 400, 564, 774, 782
                                                          x_{+}^{z}, 617, 619, 620, 639
de Cantor, 117, 121, 846
                                                          x^z e^{-\varepsilon x}, 625
de coupure, 432, 554, 579
                                                           analytique, 621
de Green, 539, 645, 691-696, 722, 725, 752
                                                          singulière, 639
  retardée, 728
                                                     fonctions
de Heaviside, 464, 543, 613
                                                           de Bessel, 231, 555, 556, 568, 628, 629,
de Kummer, 768
                                                                738, 770
de répartition, 808-810, 814, 815, 826, 828,
                                                           de Jacobi \vartheta_{\alpha}(z, q), 783, 784
     829, 832, 834
                                                     forme
de Riemann \zeta(z), 79, 132, 139, 277, 370,
                                                           canonique d'une EDP, 737, 738
     425, 429, 473, 501, 618
                                                           diagonalisable, 28
de Riemann généralisée \zeta(z, a), 365
                                                     formule
digamma \psi(z), 820, 822
                                                           d'addition (fonctions de Bessel), 881
échelon-unité, 124
                                                           d'Euler, 123, 125, 199, 289, 405, 406
elliptique, 157, 791
                                                             généralisée, 13
elliptique complète
                                                           d'interpolation de Hermite, 372
  de première espèce, 401, 403
                                                           d'inversion
  de seconde espèce, 401, 403
                                                             de Laplace, 533-538, 540, 542, 543, 545,
en dent de scie égoïne, 481
                                                                556-558, 572, 574, 577, 578, 590, 595,
en escalier (étagée), 54, 546–548, 551, 834
                                                                600, 603, 604
entière, 111, 120
                                                           de Binet, 544, 548, 549
erreur erf(x), 525, 527, 606, 675, 686, 698–
                                                           de Cauchy, 195, 196, 198, 199, 203-205,
     700, 816, 817
                                                                208, 211, 212, 253, 254, 374, 391,
erreur complémentaire \operatorname{erfc}(x), 699, 700
                                                                756 - 758
exponentielle intégrale Ei(x), 83
                                                           de doublement
génératrice
                                                             pour \Gamma(z), 209, 401, 403, 427
  des cumulants, 820, 822, 839, 842
                                                             pour \psi(z), 414, 420
  des polynômes de Legendre, 206, 207
                                                           de la movenne, 203, 204
Gamma incomplète \Gamma(\alpha, x), 58, 564
                                                             de Gauss, 203
harmonique, 178, 390, 459, 460, 464
                                                           de Laplace, 205
holomorphe, 112, 148, 171-176, 178, 180,
                                                           de Laurent, 220
     187, 188, 191, 192, 195, 196, 201-
                                                           de Leibniz, 41, 44, 45, 181, 228, 243, 326,
     203, 205, 212-215, 219, 226, 227, 230-
                                                                327, 373, 374, 442, 444, 609, 635,
     232, 239, 245, 247–249, 252, 261, 293,
                                                                741, 756, 758, 759, 766, 794
     313, 325, 339, 344, 353, 358, 370,
                                                          de Liouville, 670, 672
     371, 390, 450, 460, 466, 567, 571,
                                                           de Moivre, 132, 138
     572, 590, 598, 699
                                                           de Poisson, 330
homogène, 653
                                                           de Rodrigues, 204, 208, 209, 756, 758, 759
hypergéométrique, 766, 767
                                                             généralisée, 755
```

de Schläfli, 205	de Watson, 869
de sommation (sommatoire)	de Weber, 777
d'Abel, 53	gaussienne, 331, 332
d'Euler, 408, 409	uniformément convergente, 242
de Poisson, 334, 426	invariance modulaire, 334, 783, 786 inversion (géométrie), 165
de Stirling, 60, 88, 407, 411, 855 des compléments, 29, 30, 335, 342, 347,	isomorphisme, 14, 145, 146, 152–154, 873, 874,
400–404, 411, 672, 770, 773, 783	877, 878, 890
du binôme, 198	011, 010, 000
intégrale de Poisson pour le demi-plan su-	Ţ
périeur, 390, 391, 464, 465	J
fraction rationnelle, 94, 113, 178–180, 183, 189,	Jacobien, 214, 215, 516–518, 642, 643
227, 250, 255, 258, 278, 292, 300,	
325, 379, 573, 581, 586, 714, 920, 922	K
frontière essentielle, 255, 259	kink, 751
frottement fluide, 559, 560, 679	,
	L
G	_
	Laplacien, 459, 460
groupe C_{2v} , 895	lemme
abélien (commutatif), 872, 876, 891, 895,	de Jordan, 241, 249, 280, 291, 298, 306, 314–317, 325, 327, 382, 443, 500, 508.
896, 899, 900	534
cyclique (monogène), 873	de réarrangement, 891
des déplacements plans, 879, 881	lemniscate de Bernoulli, 147, 150
des quaternions, 888	limite visqueuse, 713
symplectique, 884, 885	loi
• • • • • • • • • • • • • • • • • • • •	-puissance, 552-554, 562-564, 579, 580,
H	604–606
	binomiale, 861
homogénéité, 51, 55, 182, 221, 231, 302, 326,	de Cauchy (lorentzienne), 807
346, 352, 520, 571, 625, 643, 744,	de composition interne (LCI), 1
782, 825 hybridation	de Fick, 713
sp ² , 890–894	de Gauss, 839, 842
d'orbitales atomiques, 890	de Gumbel, 820
a cronaiss atomiques, evo	de Maxwell, 816
Т	de Pareto, 814, 815
I	de Poisson, 823, 824, 837, 839, 842, 860– 862
idempotence, 14	
indépendance linéaire, 5, 6, 8, 14, 18	Gamma, 805, 812, 816, 839, 842, 861, 862 infiniment divisible, 805, 807
inégalité	large, 803
arithmético-géométrique de Gauss, 62, 64 de Jenssen, 61	longueur d'écran, 512
intégrale de van der Corput, 157–160	. 8 , .
instabilité	M
(amortissement) de Landau, 580, 584	M
d'un point fixe, 549, 907, 908, 919, 922,	marche au hasard, 832, 834, 839
941, 944	matrice antisymétrique, 884
numérique, 930, 944	continue (noyau), 35
intégrale	de passage, 18, 20, 21
de Dirichlet, 243, 283, 284, 322, 398, 575	de rotation, 22, 24, 25
de Fourier, 326	diagonalisable, 14, 17, 18, 146, 683
de Fresnel, 262 , 397 , 399 , 528 , 750	hermitique, 9, 10, 13, 16, 20
de Poisson, 557	non diagonalisable, 18
de Raabe, 401, 404	régulière, 15, 872, 875, 885, 886
généralisée, 402, 405	symétrique, 14, 18, 20
de Sonine - Gegenbauer, 778, 780	symplectique, 884, 886
de Wallis, 116, 118, 199	triangulaire 15

unitaire, 17	point singulier
mesure d'intégration, 6	irrégulier, 660, 661, 663, 666
méthode	à l'infini, 668
de Césaro, 88	régulier, 661, 662, 664
de Fuchs, 663–665	à l'infini, 660, 661
de variation de la constante, 646, 647, 655	pôle, 50, 270, 286, 382
des caractéristiques, 702, 707, 737	d'ordre $n, 221, 227, 228$
du col, 436–440, 443, 444, 453, 458	double, 182, 221, 228, 230, 324, 378, 387,
métrique antisymétrique, 884	541
mode plasma, 581, 585–587	simple, 182, 223, 228, 235, 236, 249, 280,
moments, 841	324, 325, 350, 357, 372, 377, 387,
momonos, o 11	504, 545, 621, 622
N	polyènes, 890
N	polynôme caractéristique, 10, 12, 13, 154
nombre d'or (<i>golden mean</i>), 544, 545, 550	polynômes
nombres	- v
de Bernoulli, 229, 448–450	de Hermite, 758, 760, 763, 765, 766
harmoniques, 97, 98, 415	de Jacobi, 758, 763, 765, 766
hypercomplexes, 887	de Laguerre, 575, 576, 759, 761, 763, 765,
noyau (intégral), 31, 34, 37–39, 320, 560–562,	766
564, 594, 597, 598, 673, 728	de Legendre, 204–208, 756–760, 763, 765
	orthogonaux, 6
O	porosité d'une frontière essentielle, 259
	portrait de phase, 903, 904, 908, 932
opérateur	potentiel de Yukawa, 511
de translation, 899, 900	poussière de Cantor, 846, 848
hermitique, 724	primitive fractionnaire, 620, 622
idempotent, 14	principe
orbitales hybrides sp ² , 894	de causalité, 281, 561, 696, 697
D	de réflexion de Schwarz, 262, 533, 595
P	problème
partie	de Cauchy, 729, 730
entière (régulière), 219, 221, 224, 376	de Dirichlet, 465, 466
finie de Hadamard, 128	de Sturm - Liouville, 672
imaginaire d'énergie libre, 453	produit
principale, 183, 194, 219, 221–224, 226,	d'Euler, 859
306, 314, 633	infini, 116, 118–121, 160
de Cauchy, 79, 80, 83, 128, 129, 190,	de Jacobi pour les $\vartheta_{\alpha}(z, q)$, 788, 790
248, 254, 273, 296, 297, 310, 315,	mixte, 21, 22
327, 357, 584, 591	scalaire, 5, 6, 488, 724, 884, 889, 899, 900
peigne de Dirac $III(x)$, 786, 899, 901, 932	hermitien, 7, 890, 893
pendule	vectoriel, 889
isochrone de Huyghens, 31	projecteur, 14, 892, 899–901
simple, 42, 47	de symétrie, 892, 899–901
période du pendule simple, 42, 47	prolongement
perturbation singulière, 49, 50	analytique, 115, 205, 206, 214, 253, 254,
phénomène de Gibbs, 473, 475	256, 257, 260, 261, 288, 293, 306,
plasma, 580, 581	308, 311, 341, 347, 349, 365, 371,
poids, 6	398, 407, 410, 453, 457, 501, 504,
point	507, 532, 556, 583, 590, 618, 619,
de branchement, 228, 232, 234, 238, 243,	621,628,631633,642,661,747,748
244, 246, 248, 302, 316, 317, 339,	de $\zeta(z)$, 502, 505
341–346, 349, 351, 355, 358, 364, 456–	par continuité, 112, 169–171, 218, 234, 243
458, 530, 533, 534, 536, 538, 539,	245, 304, 576
	propagateur, 682–685
553, 554, 558, 595, 660, 662, 717	pulsation plasma, 581, 586, 590
fixe, 904, 906, 910, 912, 916, 917, 923, 924,	
929, 930	

Q	résolvante, 17, 37		
quaternions, 13, 886–890	rotation, 15, 20–22, 24, 146, 147, 258, 511, 872–874, 879, 890–893, 895, 897, 902		
R	hyperbolique, 878, 879		
ralentissement critique, 596, 605	S		
rayon de convergence, 114, 196, 197, 457, 660,	S		
661, 664, 667	Second Principe, 720		
régularisation	sensibilité aux conditions initiales, 90, 688, 903,		
d'Euler, 274, 276, 287, 301	908		
d'une intégrale, 83, 127, 128, 130, 245,	série, 213		
248, 254, 297, 617–619	C(1)-sommable, 88		
d'une série, 274, 287	absolument convergente, 84, 85, 108, 117,		
du potentiel Coulombien, 511	222, 259, 335, 471, 484		
relation	convergente, 84, 87, 494		
de Bessel - Parseval - Plancherel, 473, 477,	d'Euler, 667		
486	de Fourier, 105, 106, 109, 215, 469–474,		
de Bragg, 140	476, 477, 480–484, 486, 490, 492, 493,		
de dispersion, 495, 497, 581, 584, 586, 587,	497, 499, 502, 506, 538, 543, 546,		
590, 592, 593, 753	547, 573, 574, 726, 736, 843, 845		
de Legendre, 414	de Fuchs, 663, 666		
de récurrence des polynômes orthogonaux,	de Gauss, 109 de Laurent, 376		
755, 761	de Taylor, 110–112		
entre moments et cumulants, 841	divergente, 84, 87, 274, 300		
fonctionnelle, 117, 121, 331, 346, 394, 395,	géométrique, 12, 16, 17, 87, 90, 105, 112,		
683–685, 877	118, 216, 219, 222, 223, 255, 257,		
de $\Gamma(z)$, 403, 412, 415 de $\psi(z)$, 412, 415	275, 296, 332, 428, 470, 478, 479,		
de $\zeta(z)$, 367, 370, 425, 427, 501, 502,	525, 574, 810, 849		
505, 507	harmonique, 96		
de Kummer, 780	alternée, 486		
du logarithme, 61	majorable, 107, 109, 214, 474, 482, 484		
relations	trigonométrique, 470, 472–474		
de Kramers - Kronig, 371	uniformément convergente, 214, 224, 482,		
de Legendre pour les intégrales elliptiques,	484, 501, 506		
798	singularité		
relaxation brisée, 594	apparente (éliminable), 182, 234, 236, 320		
renormalisation, 593	essentielle, 112, 221, 226, 229, 236, 238,		
réseau de Bravais, 682, 684	306, 352, 530, 593, 662, 915		
résidu, 218, 221, 226–231, 233, 235–238, 241,	isolée, 236, 253, 264, 278, 286, 307		
247, 254, 264, 270, 271, 279-282, 285,	non isolée, 236		
286, 288, 289, 291, 293, 297, 304,	sous-corps, 3, 4		
306, 310, 319, 324, 326, 327, 329–	sous-espace		
331, 345, 350, 354, 356, 359, 363,	isotrope, 884, 885		
367, 368, 370, 377–380, 382, 383, 386–	vectoriel, 4–6, 14 sous-groupe		
389, 442, 444, 449, 451, 500, 508,	impropre, 873		
509, 533, 545, 552, 553, 574, 577, 593, 622, 623, 631, 633, 635, 642,	propre, 873		
644, 859	sphère		
$de (1-x^2)_+^2, 628$	de Riemann, 141, 162–164		
$\det (1-x)_{+}, 628$ $\det \Gamma(z), 623$	unité, 163, 516, 518, 643, 889		
$de r^z$, 642	stabilité		
$\det r^{2}, 642$	d'un point fixe, 549, 904, 907, 910, 913,		
en un pôle	918, 920, 925, 927, 930, 939, 941		
d'ordre n, 221, 227, 228, 327, 376, 442,	d'une loi de composition, 4, 14		
577	d'une loi de probabilité, 806		
double, 230, 324, 378, 387	linéaire, 904, 910, 911, 916, 920, 922, 925–		
triple, 378, 388, 389	927, 939		

numérique, 890, 944	325, 329 – 331, 336 – 338, 346, 347, 350 –
suite	357, 360, 365, 377, 380, 387, 443,
de Fibonacci, 543, 544, 548	450, 499, 509, 513, 533, 534, 537,
de fonctions, 7, 65, 122, 125, 144, 355, 514,	541–543, 545, 552, 553, 557, 571, 573,
524, 612, 613, 616, 658, 847	574, 595, 604, 807, 808
de Lucas, 548	du prolongement analytique, 115, 218, 254
logistique, 945	261, 262, 266, 267, 293, 308, 365,
numérique, 65–68, 70, 72–75, 84, 85, 89,	504, 505, 507
90, 92, 110, 111, 122, 275, 305, 350,	fondamental
383, 384, 685–688, 690, 916, 917, 927,	de l'algèbre, 135, 140, 179, 183, 328
931, 933, 937	du calcul intégral, 31, 50, 126, 763
aléatoire, 808, 809	limite central (TLC), 808, 852, 855
supraconductivité, 312, 366	trace, 9, 13, 682, 898
symbole q de Pochhammer, 118	transformée
symétrie	de Fourier, 508, 513, 514, 620, 844
axiale, 894	d'une fonction discontinue, 512, 513
brisée, 597, 745, 926	de $(1-x^2)_+^z$, 628, 636
d'un triangle équilatéral, 872, 874	de $x_{+}^{z}e^{-\varepsilon x}$, 625, 627
d'une table de composition, 891	de la gaussienne, 499, 500
de réflexion, 464	des distributions x_{\pm}^z , 625
de translation, 582, 899, 900	du potentiel Coulombien, 512, 585
dynamique, 522	du potentiel de Yukawa, 511
gauche - droite, 745	de Laplace, 525–528, 532, 540, 543, 560,
miroir, 164, 166, 868	561, 563, 566, 567, 576, 698, 700-
radiale, 167	702, 747, 825, 826, 835
sphérique, 511, 516, 519, 892	d'une fonction périodique, 523, 538
TT.	de $1 - \text{erf}(\frac{1}{2}\sqrt{\frac{\tau}{t}}), 537$
T	$de \cos \gamma t$, 534
théorème	$de \frac{1}{\sqrt{t}}, 570$
d'Abel, 217, 274, 485	
d'addition	de $\frac{1}{\sqrt{4\pi Dt}}$ e $-\frac{(x-x_0)^2}{4Dt}$, 539
de Graf, 881, 884	$\det \frac{\sqrt{4\pi}Dt}{t}(e^{-at}-e^{-bt}), 525, 526$
des fonctions de Bessel, 880	
d'Efros, 557, 559, 605	$\det \frac{1}{t} f(t), 524$
de Bloch, 682, 684	$\det \frac{2}{t}(1-\cos\gamma t), 535$
de Cauchy, 188, 199, 250, 261, 279, 304,	$de \ln t, 525, 527$
324, 353, 446, 457, 500, 595, 598,	$\det t f(t), 523$
599, 625–627, 749	de $Y(t)t^{\alpha}$, 529, 557, 565
de Cayley - Hamilton, 9, 10, 12–14, 19,	$\det \operatorname{erf}(x), 527$
154, 885	de la fonction $Y(t)q^{E(t)}$, 572, 573
de convergence dominée, 122, 125, 242	de la fonction de Bessel J_0 , 568, 569
de convolution, 557, 561, 600	de la fonction de Bessel Y_0 , 569
de développement, 558	de la fonction partie entière $E(t)$, 550,
de Floquet, 682, 684	551 du produit $tf'(t)$, 531, 532
de Fubini, 261, 623, 624	du sinus intégral $Si(t)$, 531, 532 du sinus intégral $Si(t)$, 530, 531, 533
de Gell-Mann et Low, 672	- ()
de Lagrange, 873, 895, 896 de Laurent, 223	et équation de transport, 701 et comportement asymptotique, 578
de Liouville, 111, 201, 202, 791	transformation
de Marcinkiewicz, 839, 842	conforme, 459, 465, 466, 499
de translation, 701, 703	d'Euler, 103
des nombres premiers, 507	d'une couronne coupée en rectangle, 460,
des résidus, 135, 190, 195, 213, 240, 241,	461
246–248, 250, 253, 254, 265, 269, 271,	de Cole - Hopf, 744
273, 274, 276, 278, 279, 281, 283,	de Fourier, 512, 620, 702
287, 289, 292, 293, 298–300, 304, 306,	et équation aux dérivées partielles, 514
308, 310, 313, 315, 317, 319, 320,	et équation différentielle, 507
000, 010, 010, 011, 010, 020,	inverse, 521
	•

```
de Joukovsky, 150, 462
     de Laplace, 31, 523, 541, 564, 566, 567,
           569, 589, 698, 699, 702, 712-714, 721
        et équation différentielle, 540, 568
        et polynômes de Laguerre, 575
        et variable aléatoire, 824
        inverse, 345, 363, 543
     du boulanger, 939
     homographique, 347
     orthogonale, 25, 28
     unitaire, 20
transition
     de phase, 452
     ferromagnétique, 452
translation, 879, 899, 900
triangle de Pascal, 11
U - V
valeur propre, 10, 13, 16, 18, 19, 32, 35-37, 320,
           683, 885, 899-901
variance (écart quadratique moyen), 808, 846,
           848, 852
vecteur
     isotrope, 884, 885
     propre, 10, 14, 16-18, 20, 36, 146
        de l'opérateur de translation, 900
        normalisé, 20
     unitaire, 5, 24, 891
vitesse
     angulaire, 925
     de dérive, 585
     de groupe, 581, 587
     de phase, 581
     de propagation, 702, 704, 706, 709
     thermique, 581, 587, 592
W
Wronskien, 670, 671, 770
     des fonctions de Bessel, 770, 776
X - Y - Z
zéro
     double, 230, 237
     simple, 237, 325, 338, 553, 627, 629, 791
zéros de \tan z - z, 383, 387
```

Des mathématiques pour les sciences 2

Corrigés détaillés et commentés des exercices et problèmes

Véritable ouvrage compagnon, *Des mathématiques pour les sciences 2* guidera l'étudiant en sciences tout au long de son cycle d'études, depuis la 2° année de Licence (L2) jusqu'au Master, partant de connaissances post-baccalauréat pour aller jusqu'à des sujets avancés sur les plans technique et conceptuel.

Le Tome II présente les corrigés détaillés et commentés des problèmes proposés à la fin de chaque chapitre du livre de cours. La variété des thèmes abordés devrait permettre au lecteur d'une part d'approfondir les concepts, d'autre part d'acquérir la maîtrise des méthodes et des techniques dont l'efficacité permet de progresser vers la solution de la plupart des modélisations.

Chaque corrigé, précédé de l'énoncé correspondant, est rédigé en grand détail afin de permettre la vérification minutieuse de toutes les étapes du raisonnement et des calculs intermédiaires. Le cas échéant, un complément permet d'approfondir un point, ou d'établir un lien avec d'autres questions à première vue quelque peu éloignées du sujet du problème. Enfin, des références sont fournies, qui renvoient tantôt à des ouvrages académiques, tantôt aux revues spécialisées ayant publié les articles originaux dont certains problèmes ont été tirés.

Les «plus»

- ▶ Exposé concret et illustré
- Nombreuses applications
- Corrigés détaillés

- Démarche fondée sur l'intuition
- Multiples références aux ouvrages classiques et à des articles historiques ou récents

Claude Aslangul est professeur émérite à l'université Pierre et Marie Curie (Paris 6) et a également enseigné à l'École Normale Supérieure (Ulm) pendant une quinzaine d'années. Il est membre du Laboratoire de Physique Théorique de la Matière Condensée (Jussieu) et auteur de quatre ouvrages sur la Mécanique quantique aux éditions De Boeck Supérieur.

www.deboeck.com

ISBN 978-2-8041-8172-7

MATSC12

Dans le cadre du nouveau Système Européen de Transfert des Crédits (ECTS), ce manuel couvre les niveaux :

en France : Licence 2, 3 et Master 1.

en **Belgique**: Baccalauréat 2, 3 et Master 1. en **Suisse**: Baccalauréat 2, 3 et Master 1. au **Canada**: Baccalauréat 2, 3 et Master 1.

